首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
航空   27篇
航天技术   3篇
  2013年   2篇
  2012年   3篇
  2008年   3篇
  2007年   8篇
  2006年   1篇
  2003年   1篇
  2001年   3篇
  1998年   7篇
  1996年   1篇
  1994年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
11.
Using data from the Solar Isotope Spectrometer on the Advanced Composition Explorer obtained during 36large solar energetic particle events (SEPs) that occurred during 1997–2002 we have examined the spectral characteristics of oxygen and iron. Based on the shape of the oxygen spectrum during the decay phase following the peak in particle intensity, each SEP event was categorized as either exponential (7 events) or power law (29 events). We find that the exponential events were typically the larger events (in terms of peak oxygen intensity) and had Fe/0 ratios that strongly decreased with increasing energy.Event-averaged Fe/0 ratios (integrated over 12 to 60 MeV/nucleon) were at or below coronal abundances for nearly all these events, while the ratios obtained in the power law events were typically enhanced over coronal values. The majority of the power law events had the same spectral index for both 0 and Fe resulting in an Fe/0 ratio independent of energy. However 6 of the 29 power law events had Fe/0 ratios that increased with increasing energy due to an Fe spectral index less negative than that of 0. We consider simple diffusion theory in an effort to understand the nature of these events and obtain preliminary but promising results.  相似文献   
12.
Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.  相似文献   
13.
We discuss isotopic abundance measurements of heavy (6 ≤ Z ≤ 14) solar energetic particles with energies from ∼15 to 70 MeV/nucleon, focusing on new measurements made on SAMPEX during two large solar particle events in late 1992. These measurements are corrected for charge/mass dependent acceleration effects to obtain estimates of coronal isotopic abundances and are compared with terrestrial and solar wind isotope abundances. An example of new results from the Advanced Composition Explorer is included. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
14.
The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ~3 to ~30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ~12 energy intervals at event rates of ~1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result.  相似文献   
15.
Zwickl  R.D.  Doggett  K.A.  Sahm  S.  Barrett  W.P.  Grubb  R.N.  Detman  T.R.  Raben  V.J.  Smith  C.W.  Riley  P.  Gold  R.E.  Mewaldt  R.A.  Maruyama  T. 《Space Science Reviews》1998,86(1-4):633-648
The Advanced Composition Explorer (ACE) RTSW system is continuously monitoring the solar wind and produces warnings of impending major geomagnetic activity, up to one hour in advance. Warnings and alerts issued by NOAA allow those with systems sensitive to such activity to take preventative action. The RTSW system gathers solar wind and energetic particle data at high time resolution from four ACE instruments (MAG, SWEPAM, EPAM, and SIS), packs the data into a low-rate bit stream, and broadcasts the data continuously. NASA sends real-time data to NOAA each day when downloading science data. With a combination of dedicated ground stations (CRL in Japan and RAL in Great Britain), and time on existing ground tracking networks (NASA's DSN and the USAF's AFSCN), the RTSW system can receive data 24 hours per day throughout the year. The raw data are immediately sent from the ground station to the Space Environment Center in Boulder, Colorado, processed, and then delivered to its Space Weather Operations center where they are used in daily operations; the data are also delivered to the CRL Regional Warning Center at Hiraiso, Japan, to the USAF 55th Space Weather Squadron, and placed on the World Wide Web. The data are downloaded, processed and dispersed within 5 min from the time they leave ACE. The RTSW system also uses the low-energy energetic particles to warn of approaching interplanetary shocks, and to help monitor the flux of high-energy particles that can produce radiation damage in satellite systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
16.
Klecker  B.  Mewaldt  R.A.  Bieber  J.W.  Cummings  A.C.  Drury  L.  Giacalone  J.  Jokipii  J.R.  Jones  F.C.  Krainev  M.B.  Lee  M.A.  Le Roux  J.A.  Marsden  R.G.  Mcdonald  F.B.  McKibben  R.B.  Steenberg  C.D.  Baring  M.G.  Ellison  D.C.  Lanzerotti  L.J.  Leske  R.A.  Mazur  J.E.  Moraal  H.  Oetliker  M.  Ptuskin  V.S.  Selesnick  R.S.  Trattner  K.J. 《Space Science Reviews》1998,83(1-2):259-308
We review the observed properties of anomalous cosmic rays and the present status of our knowledge of the processes by which they originate. We compiled a comprehensive set of ACR energy spectral data from various spacecraft throughout the heliosphere during the passes of Ulysses over the poles of the Sun and present first results of a detailed modeling effort. In several contributions, we discuss the questions of injection and possible pre-acceleration of pickup ions, summarize new observations on the ionic charge composition, and present new results on the composition of minor ions in ACRs.  相似文献   
17.
Anomalous cosmic ray (ACR) intensities at 1 AU at solar minimum generally track galactic cosmic ray (GCR) intensities such as those measured by neutron monitors, albeit with differences between solar polarity cycles. The unusual cycle 23/24 solar minimum was long-lasting with very low sunspot numbers and significantly reduced interplanetary magnetic field strength and solar wind dynamic pressure and turbulence, but also featured a heliospheric current sheet tilt that remained high for an extended period. Peak ACR intensities did not recover to the maximum values reached during the last two A>0 solar minima and just barely reached the last A<0 levels. However, GCR intensities in 2009 (neutron monitor rates and also at ~200 MeV/nucleon) were the highest recorded during the last 50 years, indicating their intensities were not as heavily modulated during their transport from the outer heliosphere. This unexpected difference in the behavior of ACRs and GCRs remains unexplained, but suggests that either the ACR source intensity may have weakened since the last A<0 epoch, or perhaps that ACR intensities at 1 AU in the ecliptic may be more sensitive than GCRs to the higher tilt angle. This seems plausible if the ACR source intensity is greater at low latitudes during A<0 cycles, while the GCR distribution at the heliospheric boundary is more uniform in latitude. Shortly after an abrupt increase in the current sheet tilt angle in late 2009, both ACR and GCR intensities showed dramatic decreases, marking the end of solar minimum modulation conditions for this cycle.  相似文献   
18.
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPEX, and STEREO spacecraft and extend from ~0.1 to ~500–700?MeV. All of the proton spectra exhibit spectral breaks at energies ranging from ~2 to ~46?MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of ?3.18 at >40?MeV/nuc. In the energy range 45 to 80?MeV/nucleon about ~50?% of GLE events have properties in common with impulsive 3He-rich SEP events, including enrichments in Ne/O, Fe/O, 22Ne/20Ne, and elevated mean charge states of Fe. These 3He-rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of 〈Q Fe〉≈+20 if the acceleration starts at ~1.24–1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.  相似文献   
19.
The experimental basis of cosmic-ray astrophysics consists of detailed measurements of the cosmic-ray intensity arriving near earth, of observations of photons in all wavelength bands generated by cosmic ray interactions in the interstellar medium or in the cosmic-ray sources, and of laboratory studies of high energy particle interactions. In addition, a large body of astronomical information on the composition of stellar atmospheres and of the interstellar medium, including interstellar dust grains, is required to bring cosmic-ray data into context with subjects such as nucleosynthesis and evolution of the galaxy. This report will summarize some of these observational questions, will discuss specific experimental needs in current research, and will review some of the key measurements that can be expected for the near future. This review will neither be complete nor attempt to establish observational priorities. However, it will illustrate the variety of observational activities that are required to achieve progress.  相似文献   
20.
Cosmic-ray isotope observations from NASAs Advanced Composition Explorer (ACE) mission have been used to investigate the composition of cosmic-ray source material. Source abundances relative to 56Fe are reported for eleven isotopes of Ca, Fe, Co, and Ni, including the very rare isotopes 48Ca and 64Ni. Although the source abundances range over a factor 104, most of the ratios to 56Fe are consistent with solar-system values to within 20%. However, there are some notable differences, the most significant being an excess of (70±30)% relative to the solar system for the cosmic-ray source ratio 58Fe/56Fe. The possible association of such an excess with a contribution to the cosmic-ray source from Wolf–Rayet star ejecta is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号