首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   0篇
航空   158篇
航天技术   6篇
航天   24篇
  2021年   1篇
  2018年   69篇
  2017年   41篇
  2016年   2篇
  2015年   4篇
  2013年   3篇
  2012年   5篇
  2011年   18篇
  2010年   8篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   6篇
  1999年   1篇
  1993年   4篇
  1992年   3篇
排序方式: 共有188条查询结果,搜索用时 201 毫秒
21.
Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, \(\sim40~\mbox{kpc}\) in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We’ll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.  相似文献   
22.
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed \(\leq 4\) Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter’s orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn’s orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.  相似文献   
23.
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in this phase largely reside in the electromagnetic field, not in the observable plasma.  相似文献   
24.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   
25.
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations.  相似文献   
26.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   
27.
28.
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.  相似文献   
29.
The low-frequency component is investigated in the data of measurements performed onboard the Foton M-2 satellite with the three-component accelerometer TAS-3. Investigations consisted in comparison of this component with its calculated analog found from a reconstruction of the satellite’s attitude motion. The influence of the Earth’s magnetic field on the accelerometer readings is discovered by way of spectral analysis of the functions representing the results of determining the low-frequency microacceleration by two methods. After making correction for this influence, the results obtained by these two methods coincided within a root-mean-square error of less than 10?6 m/s2.  相似文献   
30.
Based on an updated model of the regolith’s elastic properties, we simulate the ambient vibrations background wavefield recorded by InSight’s Seismic Experiment for Interior Structure (SEIS) on Mars to characterise the influence of the regolith and invert SEIS data for shallow subsurface structure. By approximately scaling the synthetics based on seismic signals of a terrestrial dust devil, we find that the high-frequency atmospheric background wavefield should be above the self-noise of SEIS’s SP sensors, even if the signals are not produced within 100–200 m of the station. We compare horizontal-to-vertical spectral ratios and Rayleigh wave ellipticity curves for a surface-wave based simulation on the one hand with synthetics explicitly considering body waves on the other hand and do not find any striking differences. Inverting the data, we find that the results are insensitive to assumptions on density. By contrast, assumptions on the velocity range in the upper-most layer have a strong influence on the results also at larger depth. Wrong assumptions can lead to results far from the true model in this case. Additional information on the general shape of the curve, i.e. single or dual peak, could help to mitigate this effect, even if it cannot directly be included into the inversion. We find that the ellipticity curves can provide stronger constraints on the minimum thickness and velocity of the second layer of the model than on the maximum values. We also consider the effect of instrumentation resonances caused by the lander flexible modes, solar panels, and the SEIS levelling system. Both the levelling system resonances and the lander flexible modes occur at significantly higher frequencies than the expected structural response, i.e. above 35 Hz and 20 Hz, respectively. While the lander and solar panel resonances might be too weak in amplitude to be recorded by SEIS, the levelling system resonances will show up clearly in horizontal spectra, the H/V and ellipticity curves. They are not removed by trying to extract only Rayleigh-wave dominated parts of the data. However, they can be distinguished from any subsurface response by their exceptionally low damping ratios of 1% or less as determined by random decrement analysis. The same applies to lander-generated signals observed in actual data from a Moon analogue experiment, so we expect this analysis will be useful in identifying instrumentation resonances in SEIS data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号