首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航空   3篇
航天技术   6篇
航天   5篇
  2018年   1篇
  2014年   1篇
  2011年   2篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  1999年   3篇
  1990年   1篇
  1983年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
Different kinds of coronal holes are sources of different kind of solar winds. A successful solar wind acceleration model should be able to explain all those solar winds. For the modeling it is important to find a universal relation between the solar wind physical parameters, such as velocity, and coronal physical parameters such as magnetic field energy. To clarify the physical parameters which control the solar wind velocity, we have studied the relation between solar wind velocity and properties of its source region such as photospheric/coronal magnetic field and the size of each coronal hole during the solar minimum. The solar wind velocity structures were derived by using interplanetary scintillation tomography obtained at Solar-Terrestrial Environment Laboratory, Japan. Potential magnetic fields were calculated to identify the source region of the solar wind. HeI 1083 nm absorption line maps obtained at Kitt Peak National Solar Observatory were used to identify coronal holes. As a result, we found a relation during solar minimum between the solar wind velocity and the coronal magnetic condition which is applicable to different kind of solar winds from different kind of coronal holes.  相似文献   
12.
A review is given of observational results concerning the solar cycle dependence of the global structure of solar wind speed distribution during the years from 1973 to 1987. Since observations of solar wind speed in 3-dimensional space can only be made by the interplanetary scintillation method which has been carried out over one sunspot activity cycle since the early 1970's, the review is based on IPS observations. The low-speed regions tend to be distributed along neutral lines which are derived on the source surface, so comparisons between speed distribution and the neutral line are discussed.  相似文献   
13.
The role of waves in the dynamics of the magnetotail has long been a topic of interest in magnetospheric physics. The characteristics of Electrostatic Solitary Waves (ESWs) associated with reconnection have been studied statistically in the magnetotail by surveying the large amounts data obtained from Waveform Capture (WFC) which is an important component of Plasma Wave Instrument (PWI) on the Geotail spacecraft. About 150 reconnection events with WFC data available are selected, and approximately 10 thousands of ESW waveforms are picked up by hands for statistical study. The ESWs are observed near diffusion region and near the plasma sheet boundary layer (PSBL). Two kinds of waveforms of ESWs are observed: bi-polar and tri-polar pulses. It is found that the pulse width of the ESWs is in the order of 1–5 ms and the peak-to-peak amplitude is in the order of 0.1–5 mV/m. The amplitudes of ESWs are larger in the near-earth tail region than that in deep tail region. ESWs have been observed with or without guide magnetic field 〈By〉. The characteristics of ESWs in different reconnection region and under different strength of guild magnetic field, their possible generation mechanism will be discussed.  相似文献   
14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号