首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   0篇
航空   164篇
航天技术   22篇
综合类   1篇
航天   18篇
  2021年   1篇
  2020年   1篇
  2018年   68篇
  2017年   37篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2011年   15篇
  2010年   9篇
  2009年   4篇
  2008年   12篇
  2007年   7篇
  2006年   6篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2001年   6篇
  1999年   5篇
  1993年   4篇
  1992年   2篇
  1989年   4篇
  1980年   1篇
排序方式: 共有205条查询结果,搜索用时 31 毫秒
21.
The absolute reflectance of the Moon has long been debated because it has been suggested (Hillier et al. in Icarus 151:205–225, 1999) that there is a large discrepancy between the absolute reflectance of the Moon derived from Earth-based telescopic data and that derived from remote-sensing data which are calibrated using laboratory-measured reflectance spectra of Apollo 16 bulk soil 62231. Here we derive the absolute reflectance of the lunar surface using spectral data newly acquired by SELENE (Kaguya) Multiband Imager and Spectral Profiler. The results indicate that the reflectance of the Apollo 16 standard site, which has been widely used as an optical standard in previous Earth-based telescopic and remote-sensing observations derived by Multiband Imager, is 47% at 415 nm and 67% to 76% at 750 to 1550 nm of the value for the Apollo 16 mature soil measured in an Earth-based laboratory. The data also suggest that roughly 60% of the difference is caused by the difference in soil composition and/or maturity between the 62231 sampling site and the Apollo 16 standard site and that the remaining 40% difference can be explained by the difference between the compaction states of the laboratory and the actual lunar surface. Consideration of the compaction states of the surface soil demonstrates its importance for understanding the spectral characteristics of the lunar surface. We also explain and evaluate data analysis procedures to derive reflectance from Multiband Imager data.  相似文献   
22.
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in this phase largely reside in the electromagnetic field, not in the observable plasma.  相似文献   
23.
We estimate the capability of ozone (O3) retrieval with the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) instrument attached to the Exposed Facility of the Japanese Experiment Module (JEM) on the International Space Station (ISS). SMILES carries a 4-K mechanical refrigerator to cool superconducting devices in space. Since SMILES has high sensitivity thanks to the superconducting receiver, it is expected that SMILES has ability to retrieve O3 profiles more precisely than the previous millimeter–submillimeter limb measurements from satellites.  相似文献   
24.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   
25.
The low-frequency component is investigated in the data of measurements performed onboard the Foton M-2 satellite with the three-component accelerometer TAS-3. Investigations consisted in comparison of this component with its calculated analog found from a reconstruction of the satellite’s attitude motion. The influence of the Earth’s magnetic field on the accelerometer readings is discovered by way of spectral analysis of the functions representing the results of determining the low-frequency microacceleration by two methods. After making correction for this influence, the results obtained by these two methods coincided within a root-mean-square error of less than 10?6 m/s2.  相似文献   
26.
Based on an updated model of the regolith’s elastic properties, we simulate the ambient vibrations background wavefield recorded by InSight’s Seismic Experiment for Interior Structure (SEIS) on Mars to characterise the influence of the regolith and invert SEIS data for shallow subsurface structure. By approximately scaling the synthetics based on seismic signals of a terrestrial dust devil, we find that the high-frequency atmospheric background wavefield should be above the self-noise of SEIS’s SP sensors, even if the signals are not produced within 100–200 m of the station. We compare horizontal-to-vertical spectral ratios and Rayleigh wave ellipticity curves for a surface-wave based simulation on the one hand with synthetics explicitly considering body waves on the other hand and do not find any striking differences. Inverting the data, we find that the results are insensitive to assumptions on density. By contrast, assumptions on the velocity range in the upper-most layer have a strong influence on the results also at larger depth. Wrong assumptions can lead to results far from the true model in this case. Additional information on the general shape of the curve, i.e. single or dual peak, could help to mitigate this effect, even if it cannot directly be included into the inversion. We find that the ellipticity curves can provide stronger constraints on the minimum thickness and velocity of the second layer of the model than on the maximum values. We also consider the effect of instrumentation resonances caused by the lander flexible modes, solar panels, and the SEIS levelling system. Both the levelling system resonances and the lander flexible modes occur at significantly higher frequencies than the expected structural response, i.e. above 35 Hz and 20 Hz, respectively. While the lander and solar panel resonances might be too weak in amplitude to be recorded by SEIS, the levelling system resonances will show up clearly in horizontal spectra, the H/V and ellipticity curves. They are not removed by trying to extract only Rayleigh-wave dominated parts of the data. However, they can be distinguished from any subsurface response by their exceptionally low damping ratios of 1% or less as determined by random decrement analysis. The same applies to lander-generated signals observed in actual data from a Moon analogue experiment, so we expect this analysis will be useful in identifying instrumentation resonances in SEIS data.  相似文献   
27.
Proton Events and X-ray Flares in the Last Three Solar Cycles   总被引:3,自引:0,他引:3  
A database joining the available information about proton enhancements near the Earth and their possible solar sources is organized on the basis of proton measurements of the GOES and IMP-8 satellites, the data of neutron monitors, and GOES X-ray measurements. One thousand one hundred and forty-four proton events with energy > 10 MeV have been selected in the period from 1975 to 2003. More than a half of these events can be reliably related to X-ray solar flares. A statistical analysis shows the probability of observing solar protons near the Earth and their maximum flux value to be strongly dependent on the importance of a flare and its heliolongitude. Proton events are recorded after all suitably located (western) flares with X-ray importance > X5. The heliolongitude of a flare predetermines the character of the time profile of proton events in many respects. The relationship of proton events with the other characteristics of flares is established. The flares associated with proton enhancements are characterized by longer duration, slower rise to the X-ray maximum, smaller temperature, and larger length of the X-ray loops.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 171–185.Original Russian Text Copyright © 2005 by Belov, Garcia, Kurt, Mavromichalaki.  相似文献   
28.
The paper presents the methods and algorithms for positioning the dynamic (moving) objects using the oblique-incidence ionospheric sounding by chirp signals. Full-scale experiments have been performed to determine a distance to an object and its location.  相似文献   
29.
Starting from 1960s, a great number of missions and experiments have been performed for the study of the high-energy sky. This review gives a wide vision of the most important space missions and balloon experiments that have operated in the 10–600 keV band, a crucial window for the study of the most energetic and violent phenomena in the Universe. Thus it is important to take the stock of the achievements to better establish what we have still to do with future missions in order to progress in this field, to establish which are the technologies required to solve the still open issues and to extend our knowledge of the Universe.  相似文献   
30.
The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号