首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   0篇
  国内免费   1篇
航空   276篇
航天技术   41篇
航天   40篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   4篇
  2018年   72篇
  2017年   41篇
  2016年   5篇
  2015年   9篇
  2014年   2篇
  2013年   12篇
  2012年   4篇
  2011年   16篇
  2010年   10篇
  2009年   16篇
  2008年   11篇
  2007年   19篇
  2006年   13篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   11篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有357条查询结果,搜索用时 31 毫秒
291.
Westall  F.  Höning  D.  Avice  G.  Gentry  D.  Gerya  T.  Gillmann  C.  Izenberg  N.  Way  M. J.  Wilson  C. 《Space Science Reviews》2023,219(2):1-53
Space Science Reviews - Venus today is inhospitable at the surface, its average temperature of 750 K being incompatible to the existence of life as we know it. However, the potential for...  相似文献   
292.
The term “ultraviolet (UV) burst” is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016–2017.  相似文献   
293.
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.  相似文献   
294.
A study, which is the first of its kind, uses information derived from simultaneously measured wave spectra and particle distributions as the input to a theoretical linear instability model of an electrostatic cyclotron harmonic wave event recorded on GEOS-1. The presence of a hot loss cone component of the particle distribution is established experimentally, and the model accounts reasonably for the observed frequencies and relative strengths of the (n+1/2)f c and upper hybrid emission features.  相似文献   
295.
In 2003, comet 67P/Churyumov–Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size–scale free three–dimensional shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally different. The nucleus of comet 67P/Churyumov–Gerasimenko emerges as an irregular body with an effective radius (that of the sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions measured along the principal axis for the two solutions are 4.49–4.75 km, 3.54–3.77 km and 2.94–2.92 km. The nucleus is found to be in principal axis rotation with a period = 12.4–12.7 h. Merging all observational constraints allow us to specify two regions for the direction of the rotational axis of the nucleus: RA = 220°+50° −30° and Dec = −70° ± 10° (retrograde rotation) or RA = 40°+50° -30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function, although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel 1. The definition of the disk–integrated albedo of an irregular body having a strong opposition effect raises problems, and the various alternatives led to a R-band geometric albedo in the range 0.045–0.060, consistent with our present knowledge of cometary nuclei. The active fraction is low, not exceeding ~ 7% at perihelion, and is probably limited to one or two active regions subjected to a strong seasonal effect, a picture coherent with the asymmetric behaviour of the coma. Our slightly downward revision of the size of the nucleus of comet 67P/Churyumov-Gerasimenko resulting from the present analysis (with the correlative increase of the albedo compared to the originally assumed value of 0.04), and our best estimate of the bulk density of 370 kg m−3, lead to a mass of ~ 8 × 1012 kg which should ease the landing of Philae and insure the overall success of the Rosetta mission.  相似文献   
296.
Marklund  Göran  André  Mats  Lundin  Rickard  Grahn  Sven 《Space Science Reviews》2004,111(3-4):377-413
The success of the Swedish small satellite program, in combination with an active participation by Swedish research groups in major international missions, has placed Sweden in the frontline of experimental space research. The program started with the development of the research satellite Viking which was launched in 1986, for detailed investigations of the aurora. To date, Sweden has developed and launched a total of six research satellites; five for space plasma investigations; and the most recent satellite Odin, for research in astronomy and aeronomy. These fall into three main categories according to their physical dimension, financial cost and level of ambition: nano-satellites, micro-satellites, and mid-size satellites with ambitious scientific goals. In this brief review we focus on five space plasma missions, for which operations have ended and a comprehensive scientific data analysis has been conducted, which allows for a judgement of their role and impact on the progress in auroral research. Viking and Freja, the two most well-known missions of this program, were pioneers in the exploration of the aurora. The more recent satellites, Munin, Astrid, and Astrid-2 (category 1 and 2), proved to be powerful tools, both for testing new technologies and for carrying out advanced science missions. The Swedish small satellite program has been internationally recognized as cost efficient and scientifically very successful.  相似文献   
297.
SWAN is the first space instrument dedicated to the monitoring of the latitude distribution of the solar wind by the Lyman alpha method. The distribution of interstellar H atoms in the solar system is determined by their destruction during ionization charge-exchange with solar wind protons. Maps of sky Ly-α emission have been recorded regularly since launch. The upwind maximum emission region deviates strongly from the pattern that would be expected from a solar wind that is constant with latitude. It is divided in two lobes by a depression aligned with the solar equatorial plane, called the Lyman-alpha groove, due to enhanced ionization along the neutral sheet where the slow and dense solar wind is concentrated. The groove (or the anisotropy) is more pronounced in 1997 than in 1996, but it then decreases between 1997 and 1998. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
298.
There is a long history of particle measurements that have established that plasma is being transferred across Earth's magnetopause in both directions. The paper reviews the nature of the observational evidence as well as the implications regarding the transfer mechanisms and their efficiencies.  相似文献   
299.
300.
InSight’s Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of \(\sim1~\mbox{mm}\) per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels.Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight’s Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号