首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   0篇
  国内免费   2篇
航空   324篇
航天技术   75篇
综合类   1篇
航天   64篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2019年   9篇
  2018年   74篇
  2017年   41篇
  2016年   8篇
  2015年   10篇
  2014年   7篇
  2013年   22篇
  2012年   11篇
  2011年   18篇
  2010年   12篇
  2009年   16篇
  2008年   13篇
  2007年   27篇
  2006年   17篇
  2005年   8篇
  2004年   9篇
  2003年   3篇
  2002年   2篇
  2001年   14篇
  2000年   8篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   7篇
  1995年   10篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1987年   1篇
  1985年   8篇
  1984年   11篇
  1983年   10篇
  1982年   17篇
  1981年   13篇
  1980年   2篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有464条查询结果,搜索用时 15 毫秒
101.
At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6–15 R E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6–15 R E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is extended to include effects arising from the low energy electrons originating from the plasma sheet boundary layer. These electrons increase the ionospheric conductivity in a localized patch and enhance the field-aligned current through a feedback mechanism. The feedback effects were studied numerically in a dipole geometry using the the NDM. The numerical studies yield the magnitude of the field-aligned current that is large enough to form a discrete auroral arc. Our studies provide theoretical support to the observational work of Newell et al. that the feedback instability plays a major role in the formation of the discrete auroral arcs observed on the nightside magnetosphere.  相似文献   
102.
Studies based on data from the past 25–45 years show that irradiance changes related to the 11-yr solar cycle affect the circulation of the upper troposphere in the subtropics and midlatitudes. The signal has been interpreted as a northward displacement of the subtropical jet and the Ferrel cell with increasing solar irradiance. In model studies on the 11-yr solar signal this could be related to a weakening and at the same time broadening of the Hadley circulation initiated by stratospheric ozone anomalies. Other studies, focusing on the direct thermal effect at the Earth’s surface on multidecadal scales, suggest a strengthening of the Hadley circulation induced by an increased equator-to-pole temperature gradient. In this paper we analyse the solar signal in the upper troposphere since 1922, using statistical reconstructions based on historical upper-air data. This allows us to address the multidecadal variability of solar irradiance, which was supposedly large in the first part of the 20th century. Using a simple regression model we find a consistent signal on the 11-yr time scale which fits well with studies based on later data. We also find a significant multidecadal signal that is similar to the 11-yr signal, but somewhat stronger. We interpret this signal as a poleward shift of the subtropical jet and the Ferrel cell. Comparing the magnitude of the two signals could provide important information on the feedback mechanisms involved in the solar climate relationship with respect to the Hadley and Ferrel circulations. However, in view of the uncertainty in the solar irradiance reconstructions, such interpretations are not currently possible.  相似文献   
103.
The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2–80 cm-3. This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wave analysis function of the instrument is provided by FFT calculation. Compared with the swept frequency wave analysis of previous sounders, this technique has several new capabilities. In particular, when used for natural wave measurements (which cover here the 2–80 kHz range), it offers a flexible trade-off between time and frequency resolutions. In the basic nominal operational mode, the density is measured every 28 s, the frequency and time resolution for the wave measurements are about 600 Hz and 2.2 s, respectively. Better resolutions can be obtained, especially when the spacecraft telemetry is in burst mode. Special attention has been paid to the coordination of WHISPER operations with the wave instruments, as well as with the low-energy particle counters. When operated from the multi-spacecraft Cluster, the WHISPER instrument is expected to contribute in particular to the study of plasma waves in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere.  相似文献   
104.
The absolute ages of cratered surfaces in the inner solar system, including Mars, are derived by extrapolation from the impact flux curve for the Moon which has been calibrated on the basis of absolute ages of lunar samples. We reevaluate the lunar flux curve using isotope ages of lunar samples and the latest views on the lunar stratigraphy and the principles of relative and absolute age dating of geologic surface units of the Moon. The geological setting of the Apollo and Luna landing areas are described as far as they are relevant for this reevaluation. We derive the following best estimates for the ages of the multi-ring basins and their related ejecta blankets and present alternative ages for the basin events (in parentheses): 3.92 ± 0.03 Gyr (or 3.85 ± 0.05 Gyr) for Nectaris, 3.89 ± 0.02 Gyr (or 3.84 ± 0.04 Gyr) for Crisium, 3.89 ± 0.01 Gyr (or 3.87 ± 0.03 Gyr) for Serenitatis, and 3.85 ± 0.02 Gyr (or 3.77 ± 0.02 Gyr) for Imbrium. Our best estimates for the ages of the mare landing areas are: 3.80 ± 0.02 Gyr for Apollo 11 (old surface), 3.75 ± 0.01 Gyr for Apollo 17, 3.58 ± 0.01 Gyr for Apollo 11 (young surface), 3.41 ± 0.04 Gyr for Luna 16, 3.30 ± 0.02 Gyr for Apollo 15, 3.22 ± 0.02 Gyr for Luna 24, and 3.15 ± 0.04 Gyr for Apollo 12. The ages of Eratosthenian and Copernican craters remain: ~ 2.1 (?) Gyr (Autolycus), 800 ± 15 Myr (Copernicus), 109 ± 4 Myr (Tycho), 50.3 ± 0.8 (North Ray crater, Apollo 16), and 25.1 ± 1.2 (Cone crater, Apollo 14). When plotted against the crater densities of the relevant lunar surface units, these data result in a revised lunar impact flux curve which differs from the previously used flux curve in the following respects: (1) The ages of the stratigraphically most critical impact basins are notably younger, (2) the uncertainty of the calibration curve is decreased, especially in the age range from about 4.0 to 3.0 Gyr, (3) any curve for ages older than 3.95 Gyr (upper age limit of the Nectaris ejecta blanket) is abandoned because crater frequencies measured on such surface formations cannot be correlated with absolute ages obtained on lunar samples. Therefore, the impact flux curve for this pre-Nectarian time remains unknown. The new calibration curve for lunar crater retention ages less than about 3.9 Gyr provides an updated standard reference for the inner solar system bodies including Mars.  相似文献   
105.
The physical sense of the main ideas, presently used in plasma physics, is discussed. An attempt is made to clarify the concepts, used in plasma physical calculations. The concept of `Coulomb collisions' with the implicitly introduced rapid stochastization plays the main negative role in the physics of fully ionized plasma. Statistical methods, which are adequate for the neutral gas and for the partially ionized plasma, are not applicable for the completely ionized case. It is the cause of large errors in evaluating real plasma parameters. A new concept is considered: a fully ionized space plasma should be treated as a dynamical system with a low level of chaos. Further progress in space physics requires a serious renewal of plasma theory.  相似文献   
106.
The methods used to determine the aerosol optical depth as a function of wavelength are briefly described and discussed. Some results from the operational network of the World Meteorological Organization and other, more research oriented studies, are reviewed and critically analysed to assess the reliability and accuracy of such determinations and their value as ground truth measurements for space applications.  相似文献   
107.
The Comet Nucleus Sample Return Mission ROSETTA, a cornerstone mission of ESA jointly planned with NASA, requires the implementation of a highly sophisticated curatorial facility for the returned samples. A concept for the instrumentation and the mode of operation of a Comet Sample Receiving Laboratory (CSRL) is proposed. The main elements of the facility are: (1) cryogenic evacuated cabinets with robotic manipulators, (2) devices for sample dissection, aliquotisation, phase separation, and thin section preparation, and (3) instrumentation for non-destructive chemical and physical analyses and facilities for destructive mineralogical, textural, and (micro)chemical analyses. It is recommended that a very detailed Primary Sample Examination and Analysis be performed on a small representative fraction of the samples at the P-T-conditions of the parent comet nucleus before sample aliquots are released to Principal Investigators. The CSRL should be staffed with top rank personnel and supervised by an international peer review panel which may also be responsible for the selection of investigators and the allocation of samples.  相似文献   
108.
The evolution of a dispersion under the action of temperature gradients and solidification was followed optically in a transparent molten salt (CsCl) with inclusions of Pb-droplets and gas bubbles. This system is believed to model a solidifying metallic alloy. Rejection of Pb-particles by the solidification front was observed, while large gas bubbles were incorporated. Thermocapillary convection at the gas bubbles considerably distorted the temperature field and even caused local remelting. Marangoni migration of bubbles was not observed, contrary to expectations.  相似文献   
109.
The space-based sub-system of the composite observing system, operated during the Operational Year of the Global Weather Experiment, played an indispensable role in the acquisition of data and in transmitting data from surface-based and airborne observational platforms to data-processing centres. The sub-system comprised both geostationary and near-polar orbiting meteorological satellites and special efforts were undertaken to keep the performance of the system as close as possible to that which had been anticipated during the planning stage of the Experiment.Five geostationary satellites were spaced at approximately uniform intervals around the equator. They were used primarily to derive wind vectors by measuring the displacement of clouds. The satellites also provided communication support for the Aircraft to Satellite Data Relay system, by which flight level meteorological data were automatically transmitted to ground receiving stations.Three polar orbiting satellites provided data simultaneously during the whole Operational Year. Vertical temperature soundings, clear-radiance data, sea-surface temperature and wind speed data, and total atmospheric water vapour data were produced for inclusion in the research data set of the Experiment. Two of these satellites /TIROS-N and NOAA-6/ carried a new data collection and platform location system, a basic component of the Tropical Constant Level Balloon System and the Drifting Buoy System of FGGE.  相似文献   
110.
Dissipation of magnetospheric energy leads to an upper atmospheric disturbance zone whose extent varies with local time. A statistical analysis of ESRO 4 data reveals that (1) in the afternoon/evening sector the boundary location is determined by the region of electric current dissipation along the auroral oval; (2) in the midnight/early morning sector dynamical effects extend the disturbance zone to lower latitudes; and (3) in the late morning sector direct heating effects are superimposed on the residuals of the early morning disturbance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号