排序方式: 共有25条查询结果,搜索用时 93 毫秒
11.
The major features of President Obama’s new US space policy are discussed and particular aspects are compared with those of the previous Bush policy. In many cases there are similarities of substance but the tone of the latest policy is more outward looking and inclusive, with a far greater emphasis on cooperation, both internationally and with the private sector. And while some complain that the policy does not sufficiently emphasize US leadership, a statement by President Obama on the day of its release makes clear that this remains a paramount goal. Serious questions remain, however, about implementation of the new policy, particularly where it requires substantial government funding such as human spaceflight and the restructured weather/environmental satellite programs. 相似文献
12.
13.
14.
R. Goldstein M.M. Neugebauer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):271-281
Magnetic and RF mass spectrometers have been used routinely in ionospheric research, while traditional ionospheric, magnetospheric, and interplanetary plasma measurements have been made with several types of electrostatic analyzers. Proper interpretation of these data is possible if the spectral peaks are well defined, although ambiguities between fast, light ions and slow, heavy ions cannot always be satisfactorily resolved. Recent and planned experiments involve the study of plasmas which are sufficiently energetic that the spectral peaks overlap. Furthermore, these studies of ionosphere/magnetosphere coupling and of the interaction of the solar wind with the atmospheres of Venus and comets require unambiguous identification of the ion masses with simultaneous mapping of the three-dimensional velocity distribution function of each ion species. This challenge has been partially met by several new types of instruments; the two most common types involve either (1) sequential electrostatic and magnetic analyses or (2) sequential electrostatic and time-of-flight analyses. Some new instruments have also incorporated measurements of total kinetic energy, electric charge, or secondary emission coefficients as diagnostic tools. This paper reviews these recent advances and points out areas where further development is expected and needed. 相似文献
15.
Suess S. T. Phillips J. L. McComas D. J. Goldstein B. E. Neugebauer M. Nerney S. 《Space Science Reviews》1998,83(1-2):75-86
The solar wind in the inner heliosphere, inside ~ 5 AU, has been almost fully characterized by the addition of the high heliographic latitude Ulysses mission to the many low latitude inner heliosphere missions that preceded it. The two major omissions are the high latitude solar wind at solar maximum, which will be measured during the second Ulysses polar passages, and the solar wind near the Sun, which could be analyzed by a Solar Probe mission. Here, existing knowledge of the global solar wind in the inner heliosphere is summarized in the context of the new results from Ulysses. 相似文献
16.
Burnett D.S. Barraclough B.L. Bennett R. Neugebauer M. Oldham L.P. Sasaki C.N. Sevilla D. Smith N. Stansbery E. Sweetnam D. Wiens R.C. 《Space Science Reviews》2003,105(3-4):509-534
The Genesis Discovery mission will return samples of solar matter for analysis of isotopic and elemental compositions in terrestrial
laboratories. This is accomplished by exposing ultra-pure materials to the solar wind at the L1 Lagrangian point and returning
the materials to Earth. Solar wind collection will continue until April 2004 with Earth return in Sept. 2004. The general
science objectives of Genesis are to (1) to obtain solar isotopic abundances to the level of precision required for the interpretation
of planetary science data, (2) to significantly improve knowledge of solar elemental abundances, (3) to measure the composition
of the different solar wind regimes, and (4) to provide a reservoir of solar matter to serve the needs of planetary science
in the 21st century. The Genesis flight system is a sun-pointed spinner, consisting of a spacecraft deck and a sample return
capsule (SRC). The SRC houses a canister which contains the collector materials. The lid of the SRC and a cover to the canister
were opened to begin solar wind collection on November 30, 2001. To obtain samples of O and N ions of higher fluence relative
to background levels in the target materials, an electrostatic mirror (‘concentrator’) is used which focuses the incoming
ions over a diameter of about 20 cm onto a 6 cm diameter set of target materials. Solar wind electron and ion monitors (electrostatic
analyzers) determine the solar wind regime present at the spacecraft and control the deployment of separate arrays of collector
materials to provide the independent regime samples.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
17.
Daniel B. Reisenfeld Roger C. Wiens Bruce L. Barraclough John T. Steinberg Marcia Neugebauer Jim Raines Thomas H. Zurbuchen 《Space Science Reviews》2013,175(1-4):125-164
We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition. The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003). 相似文献
18.
B. E. Goldstein M. Neugebauer J. T. Gosling S. J. Bame J. L. Phillips D. J. Mccomas A. Balogh 《Space Science Reviews》1995,72(1-2):113-116
We report observations of radial and latitudinal gradients of Ulysses plasma parameters. The solar wind velocity increased rapidly with latitude from 0° to 35°, then remained approximately constant at higher latitudes. Solar wind density decreased rapidly from 0° to 35° of latitude, and also was approximately constant beyond that latitude. The mass flux similarly decreased away from the equator (but less than the density), whereas the momentum flux was relatively constant. The radial gradient of the entropy at high latitude indicated a value for the polytrope index of about 1.72 (close to adiabatic); the in-ecliptic estimates of radial gradients for temperature and entropy may be biased by temporal variation. A striking increase in the alpha particle-proton velocity difference with latitude is found. 相似文献
19.
The James Webb Space Telescope 总被引:4,自引:0,他引:4
Jonathan P. Gardner John C. Mather Mark Clampin Rene Doyon Matthew A. Greenhouse Heidi B. Hammel John B. Hutchings Peter Jakobsen Simon J. Lilly Knox S. Long Jonathan I. Lunine Mark J. Mccaughrean Matt Mountain John Nella George H. Rieke Marcia J. Rieke Hans-Walter Rix Eric P. Smith George Sonneborn Massimo Stiavelli H. S. Stockman Rogier A. Windhorst Gillian S. Wright 《Space Science Reviews》2006,123(4):485-606
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities. 相似文献
20.
Nordholt Jane E. Wiens Roger C. Abeyta Rudy A. Baldonado Juan R. Burnett Donald S. Casey Patrick Everett Daniel T. Kroesche Joseph Lockhart Walter L. MacNeal Paul McComas David J. Mietz Donald E. Moses Ronald W. Neugebauer Marcia Poths Jane Reisenfeld Daniel B. Storms Steven A. Urdiales Carlos 《Space Science Reviews》2003,105(3-4):561-599
The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios
that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved
without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for
analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor
of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high
voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and
applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent
parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements
of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize
the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements
from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument
testing and handling.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献