全文获取类型
收费全文 | 5700篇 |
免费 | 13篇 |
国内免费 | 29篇 |
专业分类
航空 | 2574篇 |
航天技术 | 2175篇 |
综合类 | 19篇 |
航天 | 974篇 |
出版年
2021年 | 54篇 |
2019年 | 40篇 |
2018年 | 120篇 |
2017年 | 82篇 |
2016年 | 72篇 |
2015年 | 25篇 |
2014年 | 126篇 |
2013年 | 164篇 |
2012年 | 155篇 |
2011年 | 228篇 |
2010年 | 147篇 |
2009年 | 257篇 |
2008年 | 314篇 |
2007年 | 168篇 |
2006年 | 145篇 |
2005年 | 174篇 |
2004年 | 177篇 |
2003年 | 198篇 |
2002年 | 123篇 |
2001年 | 183篇 |
2000年 | 128篇 |
1999年 | 139篇 |
1998年 | 158篇 |
1997年 | 125篇 |
1996年 | 153篇 |
1995年 | 197篇 |
1994年 | 178篇 |
1993年 | 93篇 |
1992年 | 144篇 |
1991年 | 49篇 |
1990年 | 51篇 |
1989年 | 127篇 |
1988年 | 41篇 |
1987年 | 41篇 |
1986年 | 58篇 |
1985年 | 172篇 |
1984年 | 132篇 |
1983年 | 106篇 |
1982年 | 132篇 |
1981年 | 154篇 |
1980年 | 45篇 |
1979年 | 30篇 |
1978年 | 37篇 |
1977年 | 36篇 |
1976年 | 29篇 |
1975年 | 26篇 |
1974年 | 34篇 |
1973年 | 25篇 |
1970年 | 27篇 |
1969年 | 24篇 |
排序方式: 共有5742条查询结果,搜索用时 15 毫秒
601.
Present-Day Sea Level Change: Observations and Causes 总被引:3,自引:0,他引:3
Cazenave A. Cabanes C. Dominh K. Gennero M.C. Le Provost C. 《Space Science Reviews》2003,108(1-2):131-144
We investigate climate-related processes causing variations of the global mean sea level on interannual to decadal time scale.
We focus on thermal expansion of the oceans and continental water mass balance. We show that during the 1990s where global
mean sea level change has been measured by Topex/Poseidon satellite altimetry, thermal expansion is the dominant contribution
to the observed 2.5 mm/yr sea level rise. For the past decades, exchange of water between continental reservoirs and oceans
had a small, but not totally negligible contribution (about 0.2 mm/yr) to sea level rise. For the last four decades, thermal
contribution is estimated to about 0.5 mm/yr, with a possible accelerated rate of thermosteric rise during the 1990s. Topex/Poseidon
shows an increase in mean sea level of 2.5 mm/yr over the last decade, a value about two times larger than reported by historical
tide gauges. This would suggest that there has been significant acceleration of sea level rise in the recent past, possibly
related to ocean warming.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
602.
Jurewicz A.J.G. Burnett D.S. Wiens R.C. Friedmann T.A. Hays C.C. Hohlfelder R.J. Nishiizumi K. Stone J.A. Woolum D.S. Becker R. Butterworth A.L. Campbell A.J. Ebihara M. Franchi I.A. Heber V. Hohenberg C.M. Humayun M. McKeegan K.D. McNamara K. Meshik A. Pepin R.O. Schlutter D. Wieler R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be
exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure
materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’),
with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically
placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection.
Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for
solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector
arrays and elsewhere targeted for the analyses of specific solar-wind components.
Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the
ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface
and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability.
A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis
website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma
data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community
throughout the 21st Century.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
603.
David G. Sibeck R. Allen H. Aryan D. Bodewits P. Brandt G. Branduardi-Raymont G. Brown J. A. Carter Y. M. Collado-Vega M. R. Collier H. K. Connor T. E. Cravens Y. Ezoe M.-C. Fok M. Galeazzi O. Gutynska M. Holmström S.-Y. Hsieh K. Ishikawa D. Koutroumpa K. D. Kuntz M. Leutenegger Y. Miyoshi F. S. Porter M. E. Purucker A. M. Read J. Raeder I. P. Robertson A. A. Samsonov S. Sembay S. L. Snowden N. E. Thomas R. von Steiger B. M. Walsh S. Wing 《Space Science Reviews》2018,214(4):79
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers. 相似文献
604.
L. Metcalfe M. Aberasturi E. Alonso R. Álvarez M. Ashman I. Barbarisi J. Brumfitt A. Cardesín D. Coia M. Costa R. Fernández D. Frew J. Gallegos J. J. García Beteta B. Geiger D. Heather T. Lim P. Martin C. Muñoz Crego M. Muñoz Fernandez A. Villacorta H. Svedhem 《Space Science Reviews》2018,214(4):78
The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes. 相似文献
605.
A. V. Streltsov J.-J. Berthelier A. A. Chernyshov V. L. Frolov F. Honary M. J. Kosch R. P. McCoy E. V. Mishin M. T. Rietveld 《Space Science Reviews》2018,214(8):118
Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field. 相似文献
606.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view. 相似文献
607.
T. Blöcker H. Holweger B. Freytag F. Herwig H.-G. Ludwig M. Steffen 《Space Science Reviews》1998,85(1-2):105-112
Based on radiation hydrodynamics modeling of stellar convection zones, a diffusion scheme has been devised describing the downward penetration of convective motions beyond the Schwarzschild boundary (overshoot) into the radiative interior. This scheme of exponential diffusive overshoot has already been successfully applied to AGB stars. Here we present an application to the Sun in order to determine the time scale and depth extent of this additional mixing, i.e. diffusive overshoot at the base of the convective envelope. We calculated the associated destruction of lithium during the evolution towards and on the main-sequence. We found that the slow-mixing processes induced by the diffusive overshoot may lead to a substantial depletion of lithium during the Sun's main-sequence evolution. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
608.
Mahaffy P.R. Donahue T.M. Atreya S.K. Owen T.C. Niemann H.B. 《Space Science Reviews》1998,84(1-2):251-263
The Galileo Probe Mass Spectrometer measurements in the atmosphere of Jupiter give D/H = (2.6 ± 0.7) × 10-5 3He/4He = (1.66 ± 0.05) × 10-4These ratios supercede earlier results by Niemann et al. (1996) and are based on a reevaluation of the instrument response at high count rates and a more detailed study of the contributions of different species to the mass peak at 3 amu. The D/H ratio is consistent with Voyager and ground based data and recent spectroscopic and solar wind (SW) values obtained from the Infrared Spectroscopic Observatory (ISO) and Ulysses. The 3He/4He ratio is higher than that found in meteoritic gases (1.5 ± 0.3) × 10-4. The Galileo result for D/H when compared with that for hydrogen in the local interstellar medium (1.6 ± 0.12) × 10-5 implies a small decrease in D/H in this part of the universe during the past 4.55 billion years. Thus, it tends to support small values of primordial D/H - in the range of several times 10-5 rather than several times 10-4. These results are also quite consistent with no change in (D+3He)/H during the past 4.55 billion years in this part of our galaxy. 相似文献
609.
Stone E.C. Cohen C.M.S. Cook W.R. Cummings A.C. Gauld B. Kecman B. Leske R.A. Mewaldt R.A. Thayer M.R. Dougherty B.L. Grumm R.L. Milliken B.D. Radocinski R.G. Wiedenbeck M.E. Christian E.R. Shuman S. von Rosenvinge T.T. 《Space Science Reviews》1998,86(1-4):357-408
The Solar Isotope Spectrometer (SIS), one of nine instruments on the Advanced Composition Explorer (ACE), is designed to provide
high- resolution measurements of the isotopic composition of energetic nuclei from He to Zn (Z=2 to 30) over the energy range
from ∼10 to ∼100 MeV nucl−1. During large solar events SIS will measure the isotopic abundances of solar energetic particles
to determine directly the composition of the solar corona and to study particle acceleration processes. During solar quiet
times SIS will measure the isotopes of low-energy cosmic rays from the Galaxy and isotopes of the anomalous cosmic-ray component,
which originates in the nearby interstellar medium. SIS has two telescopes composed of silicon solid-state detectors that
provide measurements of the nuclear charge, mass, and kinetic energy of incident nuclei. Within each telescope, particle trajectories
are measured with a pair of two-dimensional silicon-strip detectors instrumented with custom, very large-scale integrated
(VLSI) electronics to provide both position and energy-loss measurements. SIS was especially designed to achieve excellent
mass resolution under the extreme, high flux conditions encountered in large solar particle events. It provides a geometry
factor of ∼40 cm2 sr, significantly greater than earlier solar particle isotope spectrometers. A microprocessor controls the
instrument operation, sorts events into prioritized buffers on the basis of their charge, range, angle of incidence, and quality
of trajectory determination, and formats data for readout by the spacecraft. This paper describes the design and operation
of SIS and the scientific objectives that the instrument will address.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
610.
The original basis for the Lorentz transformations, and thus special relativity, was the assumption that the observed velocity of interaction of light with matter represents a unique velocity of the electromagnetic wave. This arbitrary decision is not borne out by Maxwell's theories or by any test that might prove that EM energy actually travels in a continuum of velocities. The second postulate as stated by Einstein does not deserve the status of a postulate, as it is at once overly restrictive and ultimately phenomenological-the nature of c is based on experimental measurement rather than on analysis of first principles. The radiation continuum model's (RCM) modified second postulate, however, says nothing about the actual propagation of EM energy, but only of the relative speed with which it must interact with matter to be detected. Utilizing this modified light principle we obtain an intuitive Galilean form invariance for Maxwell's equations. RCM places no upper limit on attainable velocities, and allows for the possibility of communications between humans or particles at speeds far in excess of c. This precludes many of the compatibility problems between the highly successful quantum mechanics and relativity theory 相似文献