首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8180篇
  免费   72篇
  国内免费   70篇
航空   3799篇
航天技术   3025篇
综合类   87篇
航天   1411篇
  2021年   80篇
  2019年   53篇
  2018年   149篇
  2017年   124篇
  2016年   98篇
  2015年   54篇
  2014年   180篇
  2013年   224篇
  2012年   214篇
  2011年   331篇
  2010年   236篇
  2009年   348篇
  2008年   427篇
  2007年   241篇
  2006年   218篇
  2005年   256篇
  2004年   215篇
  2003年   273篇
  2002年   187篇
  2001年   261篇
  2000年   191篇
  1999年   211篇
  1998年   233篇
  1997年   184篇
  1996年   208篇
  1995年   253篇
  1994年   254篇
  1993年   130篇
  1992年   188篇
  1991年   83篇
  1990年   83篇
  1989年   174篇
  1988年   71篇
  1987年   68篇
  1986年   79篇
  1985年   247篇
  1984年   188篇
  1983年   159篇
  1982年   170篇
  1981年   219篇
  1980年   64篇
  1979年   54篇
  1978年   62篇
  1977年   52篇
  1976年   48篇
  1975年   56篇
  1974年   50篇
  1972年   50篇
  1971年   44篇
  1969年   46篇
排序方式: 共有8322条查询结果,搜索用时 15 毫秒
151.
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun’s quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.  相似文献   
152.
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters.  相似文献   
153.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
154.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
155.
Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques  相似文献   
156.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo.  相似文献   
157.
Ulysses plasma measurement from 1.15 to 5.31 AU and from S6.4° to S48.3° solar latitude are used to assess the trends in the solar wind thermal electron temperature and anisotropy. Improved spacecraft potential corrections and data products have been incorporated. The radial temperature gradient is steeper than in previous determinations, but flatter than adiabatic. When normalized to 1 AU, temperature decrease with increasing latitude. Little change in the average thermal anisotropy has been seen during the mission.  相似文献   
158.
We describe for the first time the analysis of high energy electrons (above 240 MeV) from the COSPIN/KET experiment onboard Ulysses. The electron time profiles in four energy windows are presented from Oct. 90 to the end of March 94, up to a maximum heliographic latitude of 57 °S. The recovery rates we derived for the electrons are compared to the recovery rates of positively charged particles with the same rigidity.  相似文献   
159.
Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond 2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.  相似文献   
160.
We review work on diffusion coefficients of energetic particles with an attempt to extract implications on their behaviour at high latitudes. In the ecliptic plane results from solar energetic particle propagation between the Sun and about 5 AU can be described by an effective radial mean free path r which is approximately constant as a function of distancer. When particle propagation in three dimensions in the heliosphere is considered it is not sufficient to consider r only. Jovian electrons can be used as probes to determine the parameters of three-dimensional diffusion. In the polar regions diffusion is dominated by its parallel component. Some predictions how should vary with latitude are discussed. For different choices of this variation we present expectations for intensity-time profiles of solar particle events during the Ulysses polar passages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号