A dosimetry-radiometry system has been developed at the Space Research Institute of the Bulgarian Academy of Science to measure the fluxes and dose rates on the flight of the second Bulgarian cosmonaut. The dosimetry system is designed for monitoring the different space radiations, such as solar cosmic rays, galactic cosmic rays and trapped particles in the earth radiation belts. The system consists of a battery operated small size detector unit and a "read-write" and telemetry microcomputer unit. The sensitivity of the instrument (3.67 x 10(-8) rad/pulse) permits high resolution measurements of the flux and dose rate along the track of the Mir space station. We report our initial results for the period of the flight between the 7th and 17th June 1988. 相似文献
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment. 相似文献
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries. 相似文献
The differential rotation of the patterns of the large-scale solar magnetic field during solar activity cycles 20 and 21 is investigated. Compact magnetic elements with the polarity of the general solar magnetic field have larger speed of rotation than the elements with the opposite polarity. The surface of the Sun was divided by 10°-zones. In all of them the average rotation rate of the magnetic elements with negative polarity is little higher than that of the magnetic elements with positive polarity, except for 50°-zone of the south hemisphere and at the 10° latitude of the north hemisphere.
The rates of differential rotation for large-scale magnetic elements with negative and positive polarities have similar behavior for both cycles of the solar activity.
The rotation rate varies at polarity reversal of the circumpolar magnetic fields. For the cycle No 20 in 1969–1970 the threefold reversal took place in the northern hemisphere and variations of rotation rate can be noticed for magnetic elements both with positive and negative polarity for each 10°-zone in the same hemisphere. 相似文献
During 1986-1990 seven prime spacecrews (16 cosmonauts) have flown on-board the Mir orbital complex. The longest space mission duration was 366 days The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space. 相似文献
In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent. 相似文献
The results are presented of a comparative study evaluating the performance of neural network (NN) and fuzzy logic reconstructors (FLRs) for the development of a virtual flight data recorder (VFDK). Typical flight data recorders (FDRS) on commercial airliners do not record the aircraft control surface deflections. These dynamic parameters are critical in the investigation of an accident or an uncommanded maneuver. The results are shown relative to a VFDR based on a neural network simulator (NNS) along with a neural network reconstructor (NNR) or a FLR The NNS is trained off-line, using available flight data for the particular aircraft, for the purpose of simulating any desired dynamic output recorded in current FDRs. The NNS is then interfaced with the NNR or with the FLR. The output of the two reconstructors are the control surface deflections which minimize a performance index based on the differences between the available data from the FDR and the output from the NNS. The study tested with night data from a B737-300 shows that both schemes, the one with the NNR and the one with the FLR, provide accurate reconstructions of the control surface deflections time histories 相似文献