首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18417篇
  免费   40篇
  国内免费   126篇
航空   9957篇
航天技术   5539篇
综合类   247篇
航天   2840篇
  2021年   159篇
  2018年   228篇
  2016年   158篇
  2014年   433篇
  2013年   517篇
  2012年   421篇
  2011年   606篇
  2010年   425篇
  2009年   777篇
  2008年   810篇
  2007年   403篇
  2006年   429篇
  2005年   401篇
  2004年   457篇
  2003年   535篇
  2002年   478篇
  2001年   577篇
  2000年   370篇
  1999年   459篇
  1998年   441篇
  1997年   331篇
  1996年   397篇
  1995年   460篇
  1994年   446篇
  1993年   357篇
  1992年   342篇
  1991年   250篇
  1990年   238篇
  1989年   405篇
  1988年   207篇
  1987年   240篇
  1986年   238篇
  1985年   645篇
  1984年   521篇
  1983年   408篇
  1982年   488篇
  1981年   614篇
  1980年   245篇
  1979年   184篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   185篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
681.
Electro Energy Inc. (EEI) is developing high power, long life, bipolar nickel-metal hydride batteries for aerospace applications. Bipolar nickel-metal hydride designs allow for high energy and high power designs with a 25 percent reduction in both weight and volume as compared to prismatic and/or cylindrical Ni-MH designs. Utilizing a sealed wafer cell design EEI has demonstrated a 1.2 kW/kg power capability. Prototype designs have achieved 70 Wh/kg. Designs studies show 80 Wh/kg are achievable with EEI's state-of-the-art technology. The sealed wafer cell is the building block for EEI's high power and high voltage bipolar batteries making the assembly easy and significantly lower in cost. Satellite and aircraft batteries are being developed which provide high power and long life. Sealed cells now show excellent rate capability and life. Cells tested in a low earth orbit (LEO) cycle have reached 9000 cycles and continue on test. High power, bipolar battery designs are ideal in applications where using conventional aerospace battery technology would require excessive capacity; weight and volume, thereby reducing usable payload on the vehicle  相似文献   
682.
Space-time adaptive processing (STAP) and related adaptive array techniques hold tremendous potential for improving sensor performance by exploiting signal diversity. Such methods have important application in radar, sonar, and communication systems. Recent advances in digital signal processing technology now provide the computational means to field STAP-based systems. The objective of this special collection of papers is to examine the current state-of-the art in STAP technology and explore the remaining obstacles, practical issues and novel techniques required to implement STAP-based radar, sonar or communication systems  相似文献   
683.
The Ultra Low Maintenance (ULM) battery technology and its historical performance validation programs are reviewed. Recent military flight test programs are discussed and the growing lists of both military and commercial aircraft flying ULM batteries are presented  相似文献   
684.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   
685.
The Time Structure of Ground Level Enhancements in?Solar Cycle 23   总被引:1,自引:0,他引:1  
In a recent paper McCracken et al. (J. Geophys. Res. 113:A12101, 2008) proposed that the Ground Level Enhancement (GLE) of 20 January 2005 may have been produced by more than one acceleration mechanism, with the first acceleration due to the solar flare and the second one due to the CME associated with that event. They also noted several other GLEs with similar multiple pulse structures. This paper systematically investigates all the GLEs of solar cycle 23, from GLE 55 on 6 November 1997 to GLE 70 on 13 December 2006, to study their morphology and pulse structure, and to determine whether the multiple structures that may be found in these events are qualitatively similar to that of the GLE of 20 January 2005. We use all the data of all NMs that saw each event, to have as much directional and spectral information as possible. It is shown that three of these 16 events do contain such double-pulse structures, and the properties of these three are discussed in some detail.  相似文献   
686.
A Twin-CME Scenario for Ground Level Enhancement Events   总被引:2,自引:0,他引:2  
Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ~GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed.  相似文献   
687.
688.
The ChemCam instrument on the Mars Science Laboratory rover Curiosity will use laser-induced breakdown spectroscopy (LIBS) to analyze major and minor element chemistry from sub-millimeter spot sizes, at ranges of ~1.5–7?m. To interpret the emission spectra obtained, ten calibration standards will be carried on the rover deck. Graphite, Ti?metal, and four glasses of igneous composition provide primary, homogeneous calibration targets for the laser. Four granular ceramic targets have been added to provide compositions closer to soils and sedimentary materials like those expected at the Gale Crater field site on Mars. Components used in making these ceramics include basalt, evaporite, and phyllosilicate materials that approximate the chemical compositions of detrital and authigenic constituents of clastic and evaporite sediments, including the elevated sulfate contents present in many Mars sediments and soils. Powdered components were sintered at low temperature (800?°C) with a small amount (9?wt.%) of lithium tetraborate flux to produce ceramics that retain volatile sulfur yet are durable enough for the mission. The ceramic targets are more heterogeneous than the pure element and homogenous glass standards but they provide standards with compositions more similar to the sedimentary rocks that will be Curiosity’s prime targets at Gale Crater.  相似文献   
689.
R. P. Lin 《Space Science Reviews》2011,159(1-4):421-445
RHESSI measurements relevant to the fundamental processes of energy release and particle acceleration in flares are summarized. RHESSI??s precise measurements of hard X-ray continuum spectra enable model-independent deconvolution to obtain the parent electron spectrum. Taking into account the effects of albedo, these show that the low energy cut-off to the electron power-law spectrum is typically ?tens of keV, confirming that the accelerated electrons contain a large fraction of the energy released in flares. RHESSI has detected a high coronal hard X-ray source that is filled with accelerated electrons whose energy density is comparable to the magnetic-field energy density. This suggests an efficient conversion of energy, previously stored in the magnetic field, into the bulk acceleration of electrons. A new, collisionless (Hall) magnetic reconnection process has been identified through theory and simulations, and directly observed in space and in the laboratory; it should occur in the solar corona as well, with a reconnection rate fast enough for the energy release in flares. The reconnection process could result in the formation of multiple elongated magnetic islands, that then collapse to bulk-accelerate the electrons, rapidly enough to produce the observed hard X-ray emissions. RHESSI??s pioneering ??-ray line imaging of energetic ions, revealing footpoints straddling a flare loop arcade, has provided strong evidence that ion acceleration is also related to magnetic reconnection. Flare particle acceleration is shown to have a close relationship to impulsive Solar Energetic Particle (SEP) events observed in the interplanetary medium, and also to both fast coronal mass ejections and gradual SEP events. New instrumentation to provide the high sensitivity and wide dynamic range hard X-ray and ??-ray measurements, plus energetic neutral atom (ENA) imaging of SEPs above ??2 R??, will enable the next great leap forward in understanding particle acceleration and energy release is large solar eruptions??solar flares and associated fast coronal mass ejections (CMEs).  相似文献   
690.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号