首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5700篇
  免费   13篇
  国内免费   29篇
航空   2574篇
航天技术   2175篇
综合类   19篇
航天   974篇
  2021年   54篇
  2019年   40篇
  2018年   120篇
  2017年   82篇
  2016年   72篇
  2015年   25篇
  2014年   126篇
  2013年   164篇
  2012年   155篇
  2011年   228篇
  2010年   147篇
  2009年   257篇
  2008年   314篇
  2007年   168篇
  2006年   145篇
  2005年   174篇
  2004年   177篇
  2003年   198篇
  2002年   123篇
  2001年   183篇
  2000年   128篇
  1999年   139篇
  1998年   158篇
  1997年   125篇
  1996年   153篇
  1995年   197篇
  1994年   178篇
  1993年   93篇
  1992年   144篇
  1991年   49篇
  1990年   51篇
  1989年   127篇
  1988年   41篇
  1987年   41篇
  1986年   58篇
  1985年   172篇
  1984年   132篇
  1983年   106篇
  1982年   132篇
  1981年   154篇
  1980年   45篇
  1979年   30篇
  1978年   37篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1973年   25篇
  1970年   27篇
  1969年   24篇
排序方式: 共有5742条查询结果,搜索用时 13 毫秒
321.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   
322.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.  相似文献   
323.
In this paper we present a family of track-before-detect (TBD) procedures for early detection of moving targets from airborne radars. Upon a sectorization of the coverage area, the received echoes are jointly processed in the azimuth-range-Doppler domain and in the time domain through a Viterbi-like algorithm that exploits the physically admissible target transitions between successive illuminations, in order to collect all of the energy back-scattered during the time on target (TOT). A reduced-complexity implementation is derived assuming, at the design stage, that the target does not change resolution cell during the TOT in each scan. The constant false alarm rate (CFAR) constraint is also englobed in the proposed procedures as well as the possibility of working with quantized data. Simulation results show that the proposed algorithms have good detection and tracking capabilities even for high target velocities and low quantization rates.  相似文献   
324.
Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’.  相似文献   
325.
326.
Titan’ atmosphere shows some similarities with that of the Earth, in terms of composition and surface pressure. Also, its seasonal cycle is similar, as Titan’ obliquity is about 27°(23°,5 for the Earth), although it is about 30 times as long. Titan’ haze exhibits an albedo contrast (NSA for North-South Asymmetry) that is changing seasonally. From the analysis of Voyager and Hubble Space Telescope data, we learned that at short visible wavelengths, the albedo of the winter hemisphere is lower by 10-20% than that of the summer hemisphere. This asymmetry peaks at 450 nm and reaches maximum amplitude around Titan’ equinoxes. It reverses in about five years, faster than a season which spans seven years. At longer wavelengths, longward of 700 nm, the asymmetry is inverted. The NSA reversal process in the red and in the UV seems to lead the reversal in the blue by 1 or 2 years. No valid explanation exists for this lag, at least in the red. The results from a recent model which couples atmospheric dynamics, haze microphysics and transport, as well as photochemistry, show that the NSA and its seasonal changes can be explained by an accumulation of haze particles at the winter pole. This is due to the pole-to-pole Hadley circulation pattern that is present during most of Titan’ year and rapidly disrupts at the time of the equinoxes. This model can also explain the observed cooler stratospheric temperatures and higher abundances of heavy hydrocarbons and nitriles in the winter polar region. In addition, it provides a mechanism for the formation of a detached haze layer around 300–400 km altitude, as well as the existence of a polar hood. Thus, it appears that the latitudinal contrasts we observe on Titan are conveniently tracing for us the dynamical behavior of its atmosphere.  相似文献   
327.
An extension is presented to the particle filtering toolbox that enables nonlinear/non-Gaussian filtering to be performed in the presence of out-of-sequence measurements (OOSMs) with arbitrary lag, without the need to adopt linearising approximations in the filter and without the degradation of performance that would occur if the OOSMs were simply discarded. An estimate of the performance of the OOSM particle filter (OOSM-PF) is obtained for bearings-only tracking scenarios with a single target and a small number of sensors. These performance estimates are then compared with the posterior Cramer-Rao lower bound (CRLB) for the state estimate rms error and similar performance estimates obtained from the oosm extended Kalman filter (OOSM-EKF) algorithms recently introduced in the literature. For a mildly nonlinear bearings-only tracking problem the OOSM-PF and OOSM-EKF are shown to achieve broadly similar performance.  相似文献   
328.
The bearing capacity of hybrid segmented bearings with different groove systems is compared. The research establishes that the system with a crescent groove has the best characteristics.  相似文献   
329.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
330.
Synthetic-aperture radar processing using fast factorized back-projection   总被引:3,自引:0,他引:3  
Exact synthetic aperture radar (SAR) inversion for a linear aperture may be obtained using fast transform techniques. Alternatively, back-projection integration in time domain can also be used. This technique has the benefit of handling a general aperture geometry. In the past, however, back-projection has seldom been used due to heavy computational burden. We show that the back-projection integral can be recursively partitioned and an effective algorithm constructed based on aperture factorization. By representing images in local polar coordinates it is shown that the number of operations is drastically reduced and can be made to approach that of fast transform algorithms. The algorithm is applied to data from the airborne ultra-wideband CARABAS SAR and shown to give a reduction in processing time of two to three orders of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号