全文获取类型
收费全文 | 5820篇 |
免费 | 19篇 |
国内免费 | 22篇 |
专业分类
航空 | 2681篇 |
航天技术 | 2176篇 |
综合类 | 19篇 |
航天 | 985篇 |
出版年
2021年 | 54篇 |
2019年 | 40篇 |
2018年 | 173篇 |
2017年 | 103篇 |
2016年 | 76篇 |
2015年 | 28篇 |
2014年 | 126篇 |
2013年 | 166篇 |
2012年 | 155篇 |
2011年 | 236篇 |
2010年 | 153篇 |
2009年 | 259篇 |
2008年 | 316篇 |
2007年 | 171篇 |
2006年 | 145篇 |
2005年 | 175篇 |
2004年 | 180篇 |
2003年 | 198篇 |
2002年 | 123篇 |
2001年 | 187篇 |
2000年 | 128篇 |
1999年 | 139篇 |
1998年 | 158篇 |
1997年 | 125篇 |
1996年 | 153篇 |
1995年 | 197篇 |
1994年 | 178篇 |
1993年 | 95篇 |
1992年 | 145篇 |
1991年 | 49篇 |
1990年 | 51篇 |
1989年 | 127篇 |
1988年 | 41篇 |
1987年 | 41篇 |
1986年 | 58篇 |
1985年 | 172篇 |
1984年 | 132篇 |
1983年 | 106篇 |
1982年 | 132篇 |
1981年 | 154篇 |
1980年 | 45篇 |
1979年 | 30篇 |
1978年 | 37篇 |
1977年 | 36篇 |
1976年 | 29篇 |
1975年 | 26篇 |
1974年 | 34篇 |
1973年 | 25篇 |
1970年 | 27篇 |
1969年 | 24篇 |
排序方式: 共有5861条查询结果,搜索用时 15 毫秒
351.
352.
E. L. Akim R. N. Arkhangelsky Yu. K. Zaiko S. M. Lavrenov A. L. Poroshin E. G. Ruzsky V. A. Stepaniants A. G. Tuchin D. A. Tuchin V. P. Fedotov V. S. Yaroshevsky 《Cosmic Research》2009,47(4):299-309
Basic concepts and algorithms laid as foundations of the scheme of landing on the Martian moon Phobos (developed for the Phobos-Grunt project) are presented. The conditions ensuring the landing are discussed. Algorithms of onboard navigation and control are described. The equations of spacecraft motion with respect to Phobos are considered, as well as their use for correction of the spacecraft motion. The algorithm of estimation of the spacecraft’s state vector using measurements with a laser altimeter and Doppler meter of velocity and distance is presented. A system for modeling the landing with a firmware complex including a prototype of the onboard computer is described. 相似文献
353.
Russian Progress transport cargo vehicles have successfully been used in different space station programs since 1978. At present time, they play an important role in the International Space Station (ISS) project. Main tasks performed by the transport cargo vehicle (TCV) in the station program are the following: refueling of the station, delivery of consumables and equipment, waste removal, station attitude control and orbit correction maneuver execution. 相似文献
354.
355.
Yu. A. Kovalev V. I. Vasil’kov M. V. Popov V. A. Soglasnov P. A. Voitsik M. M. Lisakov A. M. Kut’kin N. Ya. Nikolaev N. A. Nizhel’skii G. V. Zhekanis P. G. Tsybulev 《Cosmic Research》2014,52(5):393-402
The results of a large number of the antenna radiometric measurements at bands of 92, 18, 6.2, 1.35, and 1.7-1.2 cm are presented by the data of the standard telemetry system of the Spektr-R spacecraft. Both special sessions of calibration object observations in the mode of a single space radio telescope (SRT) operation and numerous observations of researched sources in the mode of the ground-space interferometer were used. The obtained results agree with the first results of Kardashev et al. (2013), i.e., within 10–15% at bands of 92, 18, and 6.2 cm and 20–25% at the band of 1.35 cm. In the main, the measurements for the eight subbands at wavelengths of 1.7-1.2 cm indicate a monotonic increase in the spectral system equivalent flux density (SEFD) of noise radiation with a frequency consistent with the calculated estimates for the discussed model. The sensitivity of the ground-space interferometer for the five subbands at wavelengths from 1.35 to 1.7 cm can be higher by a factor of 1.5, and for the three subbands from 1.35 to 1.2 cm lower by a factor of 1.5 than at the band of 1.35 cm. The SRT contribution to the interferometer sensitivity proportional to the square root of SEFD is close to the design one at the bands of 92 and 18 cm and decreases the design sensitivity approximately by a factor of 1.5 and 2 at the bands of 6.2 and 1.35 cm, respectively. These differences of implemented values from the design ones were not significantly affected the scientific program implementation. 相似文献
356.
V. V. Kalegaev W. O. Barinova I. N. Myagkova V. E. Eremeev D. A. Parunakyan M. D. Nguyen O. G. Barinov 《Cosmic Research》2018,56(1):32-37
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth. 相似文献
357.
Rapp D Naderi F Neugebauer M Sevilla D Sweetnam D Burnett D Wiens R Smith N Clark B McComas D Stansbery E 《Acta Astronautica》1996,39(1-4):229-238
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs. 相似文献
358.
ESA astronauts' ISS flight opportunities are considered as a vital source to meet the utilisation, operation and political objectives that Europe has established for participating in the International Space Station programme. Recent internal ESA assessments have demonstrated that a rate of three flights per year for European Astronauts should be maintained as a minimum objective. The current flight rate is lower than this. In order to improve this situation, in the context of the activation of the ESA ISS Commercialisation programme, ESA is developing the conditions for the establishment of commercially based human spaceflights with the financial support of both ESA and the private sector or, in the future, only the latter. ESA is working in a Partnership with the space industry to facilitate the implementation of such projects and support customers with a range of end-to-end commercial services. The opportunities and challenges of a "commercial human spaceflight", involving a member of the European Astronaut Corps, or a privately employed flight participant, are discussed here. 相似文献
359.
Allan M. Din 《Space Policy》1986,2(1)
This article examines the computing requirements of the Strategic Defense Initiative. Dr Din points to the massive software problems inherent in SDI programming requirements, and raises the crucial issue of the potential bypassing of human control in any actual outbreak of hostilities. 相似文献
360.
Cottin H Guan YY Noblet A Poch O Saiagh K Cloix M Macari F Jérome M Coll P Raulin F Stalport F Szopa C Bertrand M Chabin A Westall F Chaput D Demets R Brack A 《Astrobiology》2012,12(5):412-425
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations. 相似文献