全文获取类型
收费全文 | 5812篇 |
免费 | 13篇 |
国内免费 | 29篇 |
专业分类
航空 | 2675篇 |
航天技术 | 2175篇 |
综合类 | 19篇 |
航天 | 985篇 |
出版年
2021年 | 54篇 |
2019年 | 40篇 |
2018年 | 173篇 |
2017年 | 103篇 |
2016年 | 74篇 |
2015年 | 28篇 |
2014年 | 126篇 |
2013年 | 166篇 |
2012年 | 155篇 |
2011年 | 236篇 |
2010年 | 153篇 |
2009年 | 259篇 |
2008年 | 316篇 |
2007年 | 171篇 |
2006年 | 145篇 |
2005年 | 175篇 |
2004年 | 179篇 |
2003年 | 198篇 |
2002年 | 123篇 |
2001年 | 187篇 |
2000年 | 128篇 |
1999年 | 139篇 |
1998年 | 158篇 |
1997年 | 125篇 |
1996年 | 153篇 |
1995年 | 197篇 |
1994年 | 178篇 |
1993年 | 95篇 |
1992年 | 145篇 |
1991年 | 49篇 |
1990年 | 51篇 |
1989年 | 127篇 |
1988年 | 41篇 |
1987年 | 41篇 |
1986年 | 58篇 |
1985年 | 172篇 |
1984年 | 132篇 |
1983年 | 106篇 |
1982年 | 132篇 |
1981年 | 154篇 |
1980年 | 45篇 |
1979年 | 30篇 |
1978年 | 37篇 |
1977年 | 36篇 |
1976年 | 29篇 |
1975年 | 26篇 |
1974年 | 34篇 |
1973年 | 25篇 |
1970年 | 27篇 |
1969年 | 24篇 |
排序方式: 共有5854条查询结果,搜索用时 15 毫秒
271.
M.J. Burchell L. Kay P.R. Ratcliff 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(12):141-145
We present new measurements concerning generation of light flash during hypervelocity impacts. We use iron particles (10−13 to 10−17 kg) with velocities over the range 1 to 42 km/s impacting semi-infinite targets (aluminium and molybdenum). The main results of previous work in the field are found to be reproduced with some slight deviations. For iron projectiles with given mass and velocity the energy of the flash (normalized to mass) is proportional to velocity to the power of 3.5 for aluminium targets and 3.9 for molybdenum targets. The duration of the flash is of order 1 microsecond. Simultaneous measurements of the generation of impact plasma do not change this. The onset of plasma generation of the bulk target material does not affect the total light flash energy. We discuss the duration of the flash compared to a simple calculation of temperature in the target and plasma vs time. 相似文献
272.
Editorial comment 总被引:1,自引:0,他引:1
273.
G E Bingham F B Salisbury W F Campbell J G Carman D L Bubenheim B Yendler V N Sytchev M A Berkovitch YuALevinskikh I G Podolsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):225-232
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.] 相似文献
274.
M. I. Becka A. Jurewicz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(12)
Currently conducted studies on modelling of scattered solar radiation in the 0.350-1.00 μm range along the Phobos orbit around Mars are presented. Our calculations include various types of grains, various densities and scattering angles. The calculations are performed with the aid of LOWTRAN7 program. These studies are directly related to the photometer coupled to PFS (Planetary Fourier Spectrometer) planned for the Mars-96 mission. 相似文献
275.
276.
Z. Peeters D. Vos I.L. ten Kate F. Selch C.A. van Sluis D.Yu. Sorokin G. Muijzer H. Stan-Lotter M.C.M. van Loosdrecht P. Ehrenfreund 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, −20, and −80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species. 相似文献
277.
An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind, flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density (N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from 2°-3°(at the Earth's orbit, it is equivalent to 3.6-5.4h, or (5.4-8.0)×106km) to the minimum about 0.025°, i.e. the angular size of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift) current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore, the value of β= 8π[N(Te + Tp)]/B2 within the tube exceeds the value of βoutside the tube. In many cases total pressure P = N(Te + Tp) + B2/8πis almost constant within and outside the tubes at any one of the aforementioned scales. 相似文献
278.
This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere. 相似文献
279.
M.O. Riazantseva G.N. Zastenker J.D. Richardson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2147-2151
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed. 相似文献
280.
M. Stepanova E. Antonova O. Troshichev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2423-2427
One minute resolution Polar Cap (PC) index was used for the analysis of magnetospheric dynamics. The 1995–2000 time series analysis revealed that the power spectrum of the PC-index fluctuations is a power law in a wide range of frequencies. However, the obtained exponents differ for low and high frequency regions. The probability distribution functions of the PC-index fluctuations show a strong non-gaussian shape, depending on the time of increment. This indicates that the PC-index exhibits intermittency, previously detected in solar wind and auroral electrojet index fluctuations. The PC-index probability distribution functions were fitted by the functional form proposed by Castaing et al. [Velocity probability density functions of high Reynolds number turbulence. Physica D. 46, 177–200, 1990] to describe intermittency phenomena in ordinary turbulent fluid flows. The agreement between the fitting parameters obtained for the PC index and those reported before for solar wind magnetic field fluctuations is within 30%; which is noticeably less than the difference between the same parameters of solar wind and the AE-index fluctuations. This fact indicates that the PC index reflects the solar wind influence on the high-latitude magnetosphere, especially during the summer. 相似文献