全文获取类型
收费全文 | 8994篇 |
免费 | 16篇 |
国内免费 | 39篇 |
专业分类
航空 | 4318篇 |
航天技术 | 3090篇 |
综合类 | 200篇 |
航天 | 1441篇 |
出版年
2021年 | 79篇 |
2019年 | 54篇 |
2018年 | 158篇 |
2017年 | 96篇 |
2016年 | 87篇 |
2014年 | 168篇 |
2013年 | 222篇 |
2012年 | 222篇 |
2011年 | 326篇 |
2010年 | 213篇 |
2009年 | 372篇 |
2008年 | 403篇 |
2007年 | 235篇 |
2006年 | 193篇 |
2005年 | 236篇 |
2004年 | 236篇 |
2003年 | 292篇 |
2002年 | 277篇 |
2001年 | 331篇 |
2000年 | 183篇 |
1999年 | 223篇 |
1998年 | 264篇 |
1997年 | 188篇 |
1996年 | 247篇 |
1995年 | 302篇 |
1994年 | 267篇 |
1993年 | 148篇 |
1992年 | 225篇 |
1991年 | 97篇 |
1990年 | 98篇 |
1989年 | 223篇 |
1988年 | 89篇 |
1987年 | 90篇 |
1986年 | 102篇 |
1985年 | 272篇 |
1984年 | 209篇 |
1983年 | 185篇 |
1982年 | 217篇 |
1981年 | 259篇 |
1980年 | 91篇 |
1979年 | 66篇 |
1978年 | 79篇 |
1977年 | 61篇 |
1976年 | 63篇 |
1975年 | 70篇 |
1974年 | 68篇 |
1972年 | 65篇 |
1971年 | 60篇 |
1970年 | 54篇 |
1969年 | 54篇 |
排序方式: 共有9049条查询结果,搜索用时 15 毫秒
901.
Q. Liu Z. Wu M. Zhu W.Q. Xu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The increase of balloon applications makes it necessary for a comprehensive understanding of the thermal and dynamic performance of scientific balloons. This paper proposed a novel numerical model to investigate the thermal and dynamic characteristics of scientific balloon in both ascending and floating conditions. The novel model consists of a dynamic model and thermal model, the dynamic model was solved numerically by a computer program developed with Matlab/Simulink to calculate the velocity and trajectory, the thermal model was solved by the Fluent program to find out the balloon film temperature distribution and inner Helium gas velocity and temperature field. These models were verified by comparing the numerical results with experimental data. Then the thermal and dynamic behavior of a scientific balloon in a real environment were simulated and discussed in details. 相似文献
902.
The effect of gravity on surface temperature and net photosynthetic rate of plant leaves. 总被引:3,自引:0,他引:3
Y Kitaya M Kawai J Tsuruyama H Takahashi A Tani E Goto T Saito M Kiyota 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):659-664
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air. 相似文献
903.
The analysis of the transient and steady-state processes in LC choppers is presented. The method, used previously for the analysis of processes in grid-connected and self-commutated converters, is adjusted for analysis of LC chopper's processes. The difference equations describing these processes, are obtained and solved. The analytical solution of the problem and the conditions of the transient, steady-state, and stability existence in the chopper are found. Theoretical and experimental results are compared and satisfactory agreement is obtained 相似文献
904.
A brief summary of the main results of magnetospheric ion composition measurements in general is first presented. PROGNOZ-7 measurements in the nightside plasma mantle are then described and analyzed. Some of the results are the following: In the nightside mantle not too far from midnight the properties of the mantle are sometimes consistent with the open magnetosphere model. However during most magnetic storm situations O+ ions appear in the mantle in large proportions and with high energies. The acceleration process affecting the ions has been found in several cases to give equal amounts of energy to all ions independent of mass. Along the flanks of the magnetosphere the flow of the plasma is often low or absent. The O+ content is high (up to 20%) and the energy spectrum of both ions and electrons may be very hot, even up to the level of the ring current plasma in the keV range.The O+ content in the plasma mantle is positively correlated with the magnetospheric activity level. The mantle, however, does not appear to be the dominating source for the storm time ring current. Direct acceleration of ionospheric ions onto the closed field lines of the plasma sheet and ring current is most likely the main source. The magnetopause on the nightside and along the flanks of the magnetosphere appears to be a fairly solid boundary for mantle ions of ionospheric origin. This is especially evident during periods with high geomagnetic activity, when the mantle is associated with fairly strong fluxes of O+ ions.An interesting observation in most of the mantle passages during geomagnetically disturbed periods is the occurrence of intense, magnetosheath like, regions deep inside the mantle. In some cases these regions with strong antisunward flow and with predominant magnetosheath ion composition was observed in the innermost part of the mantle, i.e. marking a boundary region between the lobe and the mantle. These magnetosheath penetration events are usually associated with strong fluxes of accelerated ionospheric ions in nearby parts of the mantle. Evanescent penetration regions with much reduced flow properties are frequently observed in the flank mantle. 相似文献
905.
Application of SVM on satellite images to detect hotspots in Jharia coal field region of India 总被引:1,自引:0,他引:1
R.S. Gautam D. Singh A. Mittal P. Sajin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(11):1784-1792
The present paper deals with the application of Support Vector Machine (SVM) and image analysis techniques on NOAA/AVHRR satellite image to detect hotspots on the Jharia coal field region of India. One of the major advantages of using these satellite data is that the data are free with very good temporal resolution; while, one drawback is that these have low spatial resolution (i.e., approximately 1.1 km at nadir). Therefore, it is important to do research by applying some efficient optimization techniques along with the image analysis techniques to rectify these drawbacks and use satellite images for efficient hotspot detection and monitoring. For this purpose, SVM and multi-threshold techniques are explored for hotspot detection. The multi-threshold algorithm is developed to remove the cloud coverage from the land coverage. This algorithm also highlights the hotspots or fire spots in the suspected regions. SVM has the advantage over multi-thresholding technique that it can learn patterns from the examples and therefore is used to optimize the performance by removing the false points which are highlighted in the threshold technique. Both approaches can be used separately or in combination depending on the size of the image. The RBF (Radial Basis Function) kernel is used in training of three sets of inputs: brightness temperature of channel 3, Normalized Difference Vegetation Index (NDVI) and Global Environment Monitoring Index (GEMI), respectively. This makes a classified image in the output that highlights the hotspot and non-hotspot pixels. The performance of the SVM is also compared with the performance obtained from the neural networks and SVM appears to detect hotspots more accurately (greater than 91% classification accuracy) with lesser false alarm rate. The results obtained are found to be in good agreement with the ground based observations of the hotspots. This type of work will be quite helpful in the near future to develop a hotspots monitoring system using these operational satellites data. 相似文献
906.
H.N. Wang Y.M. Cui R. Li L.Y. Zhang H. Han 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1464-1468
Nowadays operational models for solar activity forecasting are still based on the statistical relationship between solar activity and solar magnetic field evolution. In order to set up this relationship, many parameters have been proposed to be the measures. Conventional measures are based on the sunspot group classification which provides limited information from sunspots. For this reason, new measures based on solar magnetic field observations are proposed and a solar flare forecasting model supported with an artificial neural network is introduced. This model is equivalent to a person with a long period of solar flare forecasting experience. 相似文献
907.
M. Nelson W.F. DempsterJ.P. Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(5):675-683
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced (“Mars on Earth®”) in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An “Earth to Mars” project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process. 相似文献
908.
M. Nelson W.F. DempsterJ.P. Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(5):787-797
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term “modular biospheres”, have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system “metabolism” and therefore are essentially a “mini-world”. Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment. 相似文献
909.
P.P. Batista B.R. ClemeshaD.M. Simonich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(9):1408-1414
A lidar has been operated in São José dos Campos, Brazil (23.2°S, 45.8°W) since 1972, mainly dedicated to the study of mesospheric sodium at the 589 nm resonant line. The molecular Rayleigh scattering can also be used provided we limit the height to ∼75 km where the sodium scattering begins. Nevertheless, the weak signal obtained only permits the determination of density and temperature profiles by accumulating a large number of shots giving only nocturnal average profiles. Temporal variations in density and temperature on the scale of hours can however, be obtained by performing a superposed epoch analysis for a given time interval and covering a period of several days. In this way we obtained hourly mean profiles grouped by months, seasons and overall, with data acquired from 1993 to 2004. The difference between the hourly temperatures and the nocturnal means shows for some months, with enough data coverage, downward propagating structures that apparently have tidal origin. The seasonal averages show a recurrent feature with high temperatures before and low temperatures after midnight above 50 km. Some similarity is found with the GSWM model, but the observed temperature amplitudes are twice of that for the model. 相似文献
910.
H.D.R. Evans P. Bühler W. Hajdas E.J. Daly P. Nieminen A. Mohammadzadeh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1527-1537
The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L* space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models. 相似文献