首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8989篇
  免费   12篇
  国内免费   38篇
航空   4317篇
航天技术   3081篇
综合类   200篇
航天   1441篇
  2021年   78篇
  2019年   54篇
  2018年   157篇
  2017年   95篇
  2016年   86篇
  2014年   168篇
  2013年   221篇
  2012年   222篇
  2011年   326篇
  2010年   213篇
  2009年   372篇
  2008年   403篇
  2007年   235篇
  2006年   193篇
  2005年   236篇
  2004年   236篇
  2003年   292篇
  2002年   277篇
  2001年   331篇
  2000年   183篇
  1999年   223篇
  1998年   264篇
  1997年   188篇
  1996年   247篇
  1995年   302篇
  1994年   267篇
  1993年   148篇
  1992年   225篇
  1991年   97篇
  1990年   98篇
  1989年   223篇
  1988年   88篇
  1987年   89篇
  1986年   102篇
  1985年   272篇
  1984年   208篇
  1983年   184篇
  1982年   216篇
  1981年   259篇
  1980年   91篇
  1979年   66篇
  1978年   79篇
  1977年   61篇
  1976年   63篇
  1975年   70篇
  1974年   68篇
  1972年   65篇
  1971年   60篇
  1970年   54篇
  1969年   54篇
排序方式: 共有9039条查询结果,搜索用时 46 毫秒
591.
海南地区电离层闪烁监测及初步统计分析   总被引:6,自引:6,他引:6  
为开展赤道区的电离层闪烁形态特性及相关物理过程的研究,空间中心海南台站建立了一套GPS电离层闪烁监测系统.该系统是利用Plessey GPS Builder-2系统开发的,对软件的源码进行了修改,使其能以高采样率(50/s)同时并行记录11个通道GPS信号强度数据.对2003年7—12月间L-波段电离层闪烁事件的初步统计分析结果表明,电离层闪烁主要发生在日落后到午夜附近,其中9—11月较7—8月闪烁发生和结束的时间明显提前;电离层闪烁发生的频率和强度在9—11月较其他月份明显增强,其中10月达到最大;电离层闪烁的逐日变化具有很强的随机性,闪烁的发生在秋分附近9月底到10月中旬的磁静日期间达到最大;太阳和地磁活动的增强通常会抑制电离层闪烁的发生,这种情形在秋分附近尤为明显.  相似文献   
592.
An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind, flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density (N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from 2°-3°(at the Earth's orbit, it is equivalent to 3.6-5.4h, or (5.4-8.0)×106km) to the minimum about 0.025°, i.e. the angular size of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift) current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore, the value of β= 8π[N(Te + Tp)]/B2 within the tube exceeds the value of βoutside the tube. In many cases total pressure P = N(Te + Tp) + B2/8πis almost constant within and outside the tubes at any one of the aforementioned scales.  相似文献   
593.
Ionospheric Effects of Geomagnetic Storms in Different Longitude Sectors   总被引:3,自引:0,他引:3  
This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere.   相似文献   
594.
595.
We present our research on a fast and decelerating partial halo coronal mass ejection (CME) event detected in multi-wavelengths in the chromosphere and the corona on 14 October, 1999. The event involved a whole complex active area which spanned more than 40° of heliolongitude. It included a strong solar flare (XI/1N) and a complex eruptive filament within an active region of the entire complex. Especially, several radio sources were detected in the decimetric range prior to the CME by the Nançay Radioheliograph (NRH). A linear force-free field extrapolation of the Michelson Doppler Imager (MDI) magnetogram was performed to calculate the magnetic topology of the complex prior to the triggering of the event. The presence of a coronal null point combined with the occurrence of two distant and nearly simultaneous radio sources put strong arguments in favor of the generalized breakout model for the triggering of the eruption. The analysis of the subsequent development of the event suggests that large interconnecting loops were ejected together with the CME.  相似文献   
596.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.  相似文献   
597.
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.  相似文献   
598.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   
599.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   
600.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号