首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7181篇
  免费   36篇
  国内免费   39篇
航空   3234篇
航天技术   2650篇
综合类   30篇
航天   1342篇
  2021年   73篇
  2019年   56篇
  2018年   164篇
  2017年   116篇
  2016年   100篇
  2015年   39篇
  2014年   169篇
  2013年   210篇
  2012年   193篇
  2011年   296篇
  2010年   213篇
  2009年   355篇
  2008年   393篇
  2007年   217篇
  2006年   173篇
  2005年   212篇
  2004年   220篇
  2003年   246篇
  2002年   162篇
  2001年   232篇
  2000年   151篇
  1999年   172篇
  1998年   193篇
  1997年   154篇
  1996年   176篇
  1995年   226篇
  1994年   194篇
  1993年   113篇
  1992年   171篇
  1991年   59篇
  1990年   62篇
  1989年   147篇
  1988年   55篇
  1987年   54篇
  1986年   68篇
  1985年   210篇
  1984年   161篇
  1983年   132篇
  1982年   152篇
  1981年   197篇
  1980年   76篇
  1979年   42篇
  1978年   49篇
  1977年   42篇
  1976年   43篇
  1975年   39篇
  1974年   44篇
  1973年   32篇
  1970年   31篇
  1969年   30篇
排序方式: 共有7256条查询结果,搜索用时 234 毫秒
451.
The Ca K line has been measured regularly nearly every month since 1974 at Kitt Peak. It is well known that the K1 component of the Ca K line is formed in the temperature minimum region (TMR) of the solar atmosphere. Our study of the data of CaII K profiles over two solar cycles indicates that both in full disc integrated spectra and in center disc spectra, the distance between the red K1 and the blue K1 of the profiles and its average intensity show periodic variations. But the variation for the full disc integrated spectra fluctuates in the same way as the sunspot number does, while that for the center disc spectra has a time delay with respect to sunspot number. Non-LTE computations yield a cyclic temperature variation of about 17 K of the TMR in the quiet-Sun atmosphere and a cyclic variation of about 15–20 km in the height position of the TMR.  相似文献   
452.
Comet 19P/Borrelly was observed by Deep Space One spacecraft on September 22, 2001 (Soderblom et al., 2002).The DS1 images show a very dark and elongate nucleus with a complex topography; the IR spectra show a strong red-ward slope consistent with a very hot and dry surface (345K to 300K). During DS1 encounter the comet coma was dominated by a prominent jet but most of the comet was inactive, confirming the Earth-based observations that <10% of the surface is actively sublimating. We have developed a thermal evolution model of comet PBorrelly, using a numerical code that is able to solve the heat conduction and gas diffusion equations at the same time across an idealized spherical nucleus ( De Sanctis et al., 1999, 2000; Capria et al., 2000; Coradini et al., 1997a,b). The comet nucleus is composed by water, volatiles ices and dust in different proportions. The refractory component is made by grains that are embedded in the icy matrix. The code is able to account for the dust release, contributing to the dust flux, and the formation of dust mantles on the comet surface. The model was applied to a cometary nucleus with the estimated physical and dynamical characteristics of P/Borrelly in order to infer the status and activity level of a body on such an orbit during the DS1 observation. The comet gas flux, differentiation and thermal behavior were simulated and reproduced. The model results are in good agreement with the DS1 flyby results and the ground based observations, in terms of activity, dust coverage and temperatures of the surface.  相似文献   
453.
MUSES-C, a Japanese sample return mission, is targeting a small near Earth asteroid, 1998SF36, which is considered an S-type asteroid and is similar in spectroscopy to LL class ordinary chondrite meteorite ([Binzel et al., 2001]). Although this mission will bring us detailed photometric data, that is, disk-resolved bidirectional reflectance data of the asteroid, there were few bidirectional reflectance data of ordinary chondrite meteorites. For the purpose of comparison with the data obtained by the in-situ observation, we have performed measurements of bidirectional reflectance of ordinary chondrite samples.

Here we summarize the result of our laboratory measurements of the bidirectional reflectance and compare them with the scattering property of 1998SF36. Although the geometric albedo of 1998SF36 is higher than the typical value of S-type asteroids, however, the laboratory data of ordinary chondrite are similar to or brighter than the model disk-resolved reflectance of 1998SF36 derived from disk-integrated ground-based data. We found in our laboratory data that there is a positive correlation between the surface roughness and the strength of the opposition effect. A stronger opposition effect in the reflectance of 1998SF36 than the laboratory data may therefore indicate that the surface of the asteroid has rougher structure than our laboratory samples.  相似文献   

454.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   
455.
An excess over the extrapolation to the extreme ultraviolet and soft X-ray ranges of the thermal emission from the hot intracluster medium has been detected in a number of clusters of galaxies. We briefly present each of the satellites (EUVE, ROSAT PSPC and BeppoSAX, and presently XMM-Newton, Chandra and Suzaku) and their corresponding instrumental issues, which are responsible for the fact that this soft excess remains controversial in a number of cases. We then review the evidence for this soft X-ray excess and discuss the possible mechanisms (thermal and non-thermal) which could be responsible for this emission.  相似文献   
456.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   
457.
458.
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.  相似文献   
459.
Recently much attention has been focused on the transient behavior of the magnetopause in response to pressure pulses and southward fluctuations of the interplanetary magnetic field. We examine the motion of the magnetopause behind the foreshock and conclude that this motion is affected by foreshock pressure variations but not by fluctuations in the direction of the magnetic field. Neither magnetopause erosion nor flux transfer event occurrence is controlled by the foreshock. On the contrary, flux transfer events occur at times of steady IMF and thier quasi-periodic behavior is controlled by the magnetopause or the magnetosphere and is not driven by the external boundary conditions. Since flux transfer events are clearly due to reconnection, this observation implies that the IMF must be southward some time perhaps as long as 7 minutes before flux transfer begins.  相似文献   
460.
We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号