首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9345篇
  免费   35篇
  国内免费   52篇
航空   4475篇
航天技术   3316篇
综合类   31篇
航天   1610篇
  2021年   73篇
  2019年   60篇
  2018年   158篇
  2017年   107篇
  2016年   92篇
  2014年   197篇
  2013年   249篇
  2012年   239篇
  2011年   335篇
  2010年   218篇
  2009年   384篇
  2008年   459篇
  2007年   260篇
  2006年   208篇
  2005年   271篇
  2004年   250篇
  2003年   304篇
  2002年   200篇
  2001年   287篇
  2000年   184篇
  1999年   227篇
  1998年   265篇
  1997年   192篇
  1996年   258篇
  1995年   319篇
  1994年   303篇
  1993年   167篇
  1992年   240篇
  1991年   105篇
  1990年   93篇
  1989年   228篇
  1988年   82篇
  1987年   86篇
  1986年   102篇
  1985年   288篇
  1984年   251篇
  1983年   182篇
  1982年   226篇
  1981年   265篇
  1980年   85篇
  1979年   81篇
  1978年   78篇
  1977年   60篇
  1976年   55篇
  1975年   72篇
  1974年   73篇
  1973年   55篇
  1972年   59篇
  1970年   52篇
  1969年   54篇
排序方式: 共有9432条查询结果,搜索用时 46 毫秒
241.
Observability in the context of bearings-only tracking (BOT) is still the subject of important literature. Different from previous approaches, where continuous-time analysis was considered, our approach relies on discrete-time analysis. It is then shown that this allows us to use directly and efficiently the simple formalisms of linear algebra. Using the direct approach, observability analysis is essentially reduced to basic considerations about subspace dimensions. Even if this approach is conceptually quite direct, it becomes more and more complex as the source-encounter scenario complexity increases. For complex scenarios, the dual approach may present some advantages essentially due to the direct use of multilinear algebra. New results about BOT observability for maneuvering sources are thus obtained. Observability analysis is then extended to unknown instants of source velocity changes. Even if observability analysis provides thorough insights about the algebraic structure of the BOT problem, the optimization of the observer maneuvers is essentially a control problem. Basic algebraic considerations prove that a relevant cost functional for this control problem is the determinant of the Fisher information matrix (FIM). So, a large part of this work is devoted to the analysis of this cost functional. Using multilinear algebra, general approximations of this functional are given. In order to involve only directly estimable parameters, the source bearing-rates are examined. Using these approximations, a general framework for optimizing the observer trajectory is derived which allow us to approximate the optimal sequence of controls. It is worth stressing that our approach does not require the knowledge of the source trajectory parameters and is still valid for a maneuvering source.  相似文献   
242.
A New Mathematical Formulation for Strapdown Inertial Navigation   总被引:12,自引:0,他引:12  
A differential equation is developed for the orientation vector relating the body frame to a chosen reference frame. The time derivative of this vector is the sum of the inertially measurable angular velocity vector and of the inertially nonmeasurable noncommutativity rate vector. It is precisely this noncommutativity rate vector that causes the computational problems when numerically integrating the direction cosine matrix. The orientation vector formulation allows the noncommutativity contribution to be isolated and, therefore, treated separately and advantageously. An orientation vector mechanization is presented for a strap down inertial system. Further, an example is given of the applica tion of this formulation to a typical rigid body rotation problem.  相似文献   
243.
The application of existing estimation theory to the problem of specification and performance of passive sonar spectral estimators is considered. The classification function is addressed, so that the signal is assumed to be present, and so that the energy arrival angle is known. The spatial filter considered is a line array of M equally spaced omnidirectional hydrophones. Signal and ambient noise are both zero-mean, wide-sense, stationary Gaussian random processes that differ in their spatial correlation across the face of the array. The signal is a plane wave that can be made totally spacially corrected between array elements by inserting delays between sensors to invert the signal propagation delay. The noise correlation is a function of frequency, bandwidth, element separation, and the relative time delay between sensors. Under these assumptions, the Cramer-Rao lower bound is derived for the class of unbiased estimates of signal power in a narrow frequency band at the hydrophone in the presence of correlated ambient noise of known power. The bound is examined numerically, resulting in a threshold phenomenon with M that constitutes a new design consideration. In addition, there is a striking insensitivity to realistic values of ambient noise correlation, and there are ranges in signal-to-noise ratio for which one gains more by increasing M than by increasing the bandwidth-time product. Specific processors, including a new unbiased estimator when noise power is unknown, are developed.  相似文献   
244.
固体火箭发动机寿命预估的一种考虑   总被引:3,自引:0,他引:3       下载免费PDF全文
朱智春  蔡峨 《推进技术》1996,17(4):10-13,16
利用弹性-粘弹性对应原理,分析长期贮存固体推进剂药柱由环境温度变化引起的热应力,计算药柱损伤,并对发动机寿命进行预估。理论分析和算法具有普遍性,可供工程设计参考。  相似文献   
245.
Medium PRF set selection using evolutionary algorithms   总被引:2,自引:0,他引:2  
This paper presents a new and novel method of selecting multiple pulse repetition frequency (PRF) sets for use in medium PRF pulsed-Doppler radars. Evolutionary algorithms are used to minimise the blind areas in the range/Doppler space. The evolutionary algorithm allows optimal solutions to be generated quickly, far faster than with exhaustive searches, and is fully automatic, unlike existing techniques. The evolved solutions compare very favorably against the results of both an exhaustive search and existing published PRF set selection methods. This evolutionary approach to generation of PRF sets is a major advance in medium PRF radar design.  相似文献   
246.
This work is concerned with binary systems that we call ‘moderately close’. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore ‘moderately close’. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an αω dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical ‘moderately close’ Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.  相似文献   
247.
A scheme is presented for the identification of naval vessels via active multiple-frequency radar interrogation. A major virtue of the described method is the use of a response waveform synthesized using amplitude data only. A prediction correlation using natural resonances associated with substructures on the vessels is applied to synthetically generated matched-filter response waveforms. The identification scheme is tested using measured model data for 8 vessels on a simulated sea surface. A correct identification probability of roughly 77 percent is obtained.  相似文献   
248.
This paper describes the architecture and calibration design of the experimental ground based radar station MERIC. This full-polarimetric radar is conceived for the analysis and the recognition of non cooperative aircraft in flight.We carefully study how the full-polarimetric capability is obtained for a simultaneous transmit (simultaneous transmission of two linear FM with opposite slopes) radar system, using analogue deramping with a replica.The phase distortions of the signal propagating in the four polarimetric channels are carefully estimated. We define a phase calibrating method compatible with the outdoor measurements conditions and few constraints on reference targets.We show the phase accuracy obtained with the proposed calibration method on real measurements.  相似文献   
249.
Optimum estimation (tracking) of the polarization plane of a linearly polarized electromagnetic wave is determined when the signal is a narrow-band Gaussian random process with a polarization plane angle which is also a Gaussian random process. This model is Compared to previous work and is applicable to space communication. The estimator performs a correlation operation similar to an amplitude -comparison monopulse angle tracker, giving the name correlation polarimeter. Under large signal-to-noise ratio (SNR), the estimator is causal. Performance of the causal correlation polarimeter is evaluated for arbitrary SNR. Optimum precorrelation filtering is determined. With low SNR, the performance of this system is far better than that of previously developed systems. Practical implementation is discussed. A scheme is given to reduce the effect of linearly polarized noise.  相似文献   
250.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号