首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   12篇
  国内免费   14篇
航空   128篇
航天技术   84篇
综合类   18篇
航天   268篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2014年   3篇
  2013年   5篇
  2012年   22篇
  2011年   21篇
  2010年   16篇
  2009年   3篇
  2008年   9篇
  2007年   16篇
  2006年   14篇
  2005年   34篇
  2004年   9篇
  2003年   12篇
  2002年   14篇
  2001年   3篇
  2000年   7篇
  1999年   12篇
  1998年   24篇
  1997年   15篇
  1996年   6篇
  1995年   24篇
  1994年   12篇
  1993年   9篇
  1992年   11篇
  1991年   17篇
  1990年   10篇
  1989年   12篇
  1988年   16篇
  1987年   19篇
  1986年   2篇
  1985年   19篇
  1984年   17篇
  1983年   26篇
  1982年   14篇
  1981年   10篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1959年   1篇
  1958年   1篇
排序方式: 共有498条查询结果,搜索用时 93 毫秒
371.
火星等离子体环境探测   总被引:1,自引:0,他引:1  
萤火一号(YH-1)探测器将对火星空间环境进行独立而深入的探测研究,探测各空间区域的等离子体特性及其对太阳风扰动的响应,以及火星离子逃逸过程,研究太阳风对火星水体损失的影响。为了实现这一目标,萤火一号搭载了等离子体探测包,包括2个离子分析器和1个电子分析器,具有较高的时间分辨率、能量分辨率,可以探测0.02~10 keV的离子、电子,同时能够对粒子的入射方向及1~44 au(1 au=9.1095×10~(-31)kg)质量范围内的离子成分进行分辨。本文阐述了萤火一号等离子体探测的科学意义,并对等离子体包的工作原理,仪器设计进行了介绍。  相似文献   
372.
预应力砼结构技术的发展,推动了斜拉桥的广泛应用,且具有结构形式经济的虎性。拉索和锚具的高强度和抗疲劳特性以及抗蚀保护成为设计工程师设计的关键。该文着重介绍了近几年 来美国斜拉钢索的防抗蚀方面的新方法、新材料。  相似文献   
373.
In this paper, we investigate a formation control problem of multi-agent systems(specifically a group of unmanned aerial vehicles) based on a semi-global leader-following consensus approach with both the leader and the followers subject to input saturation. Utilizing the low gain feedback design technique, a distributed static control protocol and a distributed adaptive control protocol are constructed. The former solves the problem under an assumption that the communication network is undirecte...  相似文献   
374.
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.  相似文献   
375.
We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.  相似文献   
376.
Tardigrades are tiny (less than 1?mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.  相似文献   
377.
Popa R  Smith AR  Popa R  Boone J  Fisk M 《Astrobiology》2012,12(1):9-18
The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ~12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.  相似文献   
378.
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   
379.
Radiation Risk Radiometer-Dosimeter E (R3DE) served as a device for measuring ionizing and non-ionizing radiation as well as cosmic radiation reaching biological samples located on the EXPOSE platform EXPOSE-E. The duration of the mission was almost 1.5 years (2008-2009). With four channels, R3DE detected the wavelength ranges of photosynthetically active radiation (PAR, 400-700?nm), UVA (315-400?nm), UVB (280-315?nm), and UVC (<280?nm). In addition, the temperature was recorded. Cosmic ionizing radiation was assessed with a 256-channel spectrometer dosimeter (see separate report in this issue). The light and UV sensors of the device were calibrated with spectral measurement data obtained by the Solar Radiation and Climate Experiment (SORCE) satellite as standard. The data were corrected with respect to the cosine error of the diodes. Measurement frequency was 0.1?Hz. Due to errors in data transmission or temporary termination of EXPOSE power, not all data could be acquired. Radiation was not constant during the mission. At regular intervals of about 2 months, low or almost no radiation was encountered. The radiation dose during the mission was 1823.98 MJ m(-2) for PAR, 269.03 MJ m(-2) for UVA, 45.73 MJ m(-2) for UVB, or 18.28 MJ m(-2) for UVC. Registered sunshine duration during the mission was about 152 days (about 27% of mission time).The surface of EXPOSE was most likely turned away from the Sun for considerably longer. R3DE played a crucial role on EXPOSE-EuTEF (EuTEF, European Technology Exposure Facility), because evaluation of the astrobiology experiments depended on reliability of the data collected by the device. Observed effects in the samples were weighted by radiation doses measured by R3DE.  相似文献   
380.
Abstract The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument. Key Words: Life-detection instruments-Planetary habitability and biosignatures-Radiation-Mars-Life in extreme environments. Astrobiology 12, 718-729.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号