全文获取类型
收费全文 | 5796篇 |
免费 | 17篇 |
国内免费 | 37篇 |
专业分类
航空 | 2608篇 |
航天技术 | 2209篇 |
综合类 | 19篇 |
航天 | 1014篇 |
出版年
2021年 | 62篇 |
2019年 | 45篇 |
2018年 | 126篇 |
2017年 | 83篇 |
2016年 | 73篇 |
2015年 | 26篇 |
2014年 | 126篇 |
2013年 | 167篇 |
2012年 | 163篇 |
2011年 | 237篇 |
2010年 | 149篇 |
2009年 | 258篇 |
2008年 | 318篇 |
2007年 | 169篇 |
2006年 | 148篇 |
2005年 | 183篇 |
2004年 | 181篇 |
2003年 | 201篇 |
2002年 | 123篇 |
2001年 | 186篇 |
2000年 | 129篇 |
1999年 | 142篇 |
1998年 | 158篇 |
1997年 | 125篇 |
1996年 | 153篇 |
1995年 | 199篇 |
1994年 | 179篇 |
1993年 | 93篇 |
1992年 | 144篇 |
1991年 | 49篇 |
1990年 | 51篇 |
1989年 | 129篇 |
1988年 | 42篇 |
1987年 | 41篇 |
1986年 | 58篇 |
1985年 | 174篇 |
1984年 | 137篇 |
1983年 | 108篇 |
1982年 | 135篇 |
1981年 | 164篇 |
1980年 | 46篇 |
1979年 | 30篇 |
1978年 | 37篇 |
1977年 | 36篇 |
1976年 | 29篇 |
1975年 | 26篇 |
1974年 | 34篇 |
1973年 | 25篇 |
1970年 | 27篇 |
1969年 | 24篇 |
排序方式: 共有5850条查询结果,搜索用时 15 毫秒
151.
S. Seetha M.C. Ramadevi V.C. Babu M.R. Sharma N.S.R. Murthy B.N. Ashoka K.C. Shyama R. Kulkarni G. Meena P. Sreekumar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2995-2998
The Scanning Sky Monitor is one of the experiments onboard the ASTROSAT, an Indian multiwavelength astronomy satellite mission. This experiment will detect and monitor X-ray transients in the energy band 2–10 keV. It is similar in design to the ASM on RXTE. It consists of position-sensitive proportional counters with one-dimensional mask. We describe the configuration of the experiment. We also discuss some of the results obtained using a detector which has already been fabricated and tested in our laboratory. 相似文献
152.
F. Capitanio A. Bazzano P. Ubertini G. De Cesare M. Del Santo A. Tarana A. Joinet 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2816-2819
On March 2003, IBIS, the γ-ray imager on board the INTEGRAL satellite, detected an outburst from a new source, IGR J17464-3213, that turned out to be an HEAO-1 transient, namely H1743-322. The spectral and temporal evolutions of the source were observed by INTEGRAL in different periods. Also RXTE observed the source for the first time on 2003 March 29 during a PCA Galactic bulge scan. The source flux decayed below the RXTE PCA sensitivity limit in November 2003, then in April 2004 it was again detected by INTEGRAL. On July 3, 2004 the source was again detected by RXTE/PCA at a 2–10 keV intensity of 16 mCrab and on July 7, reached 69 mCrab. Recently, a new outburst was observed on August 2005. We briefly summarise here the behaviour of the source observed by INTEGRAL from March 2003 to August 2005. The new outbursts of the source and the analysis of all the data collected (now public) give a global view of the spectral and time behaviour of this X-ray transient. 相似文献
153.
M. van der Klis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2675-2679
Some aspects of the rapid X-ray variability of low magnetic-field neutron stars in low-mass X-ray binaries are briefly summarized. 相似文献
154.
M. Storini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(12):1965-1974
The study of the response of the terrestrial environment to the different forms of solar activity is a relevant task. Geomagnetic perturbations arise from the solar wind/magnetospheric coupling and major magnetic storms are caused by intense, long duration Southward interplanetary magnetic fields. This paper addresses reader's attention on possible effects induced by geomagnetic storms on the Earth's ozone layer by reporting a series of experimental results related to the topic. Difficulties connected with a right assessment of such kind of effects are described. 相似文献
155.
G. I. Pugacheva A. A. Gusev U. B. Jayanthi I. M. Martin W. N. Spjeldvik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(12):1759-1762
We report a study of the numeric solution to the diffusive transport equation for energetic protons magnetically trapped in the Earth's equatorial magnetosphere. The analysis takes into account the pertinent physical processes in this region, including deceleration of protons by Coulomb collisional interactions with free and bound electrons, the charge exchange process, cosmic ray albedo neutron decay source, and electric and magnetic radial diffusion. These results were obtained using the Finite Element Method with magnetic moment and geomagnetic L-shell as free variables. Steady state boundary conditions were imposed at L=1 as zero distribution function and at L=7 with proton distribution function extracted from ATS 6 satellite observations. The FEM-code yields unidirectional proton flux in the energy range of 0.1–1000 MeV at the equatorial top of the geomagnetic lines, and the results are found to be in satisfactorily agreement with the empirical NASA AP-8 model proton flux within the energy range of 0.5–100 MeV. Below 500 keV, the empirical AP-8 model proton fluxes are several orders of magnitude greater than those computed with the FEM-code at L<3. This discrepancy is difficult to explain by uncertainties of boundary spectrum parameters or transport coefficients. 相似文献
156.
V D Kern S Bhattacharya R N Bowman F M Donovan C Elland T F Fahlen B Girten M Kirven-Brooks K Lagel G B Meeker O Santos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):1023-1030
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners. 相似文献
157.
N S Pechurkin I M Shirobokova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1497-1504
Closed Artificial ecosystems (CAES) have good prospects for wide use as new means for quantitative studies of different types of both natural ecosystems and man-made ones. The paper deals with the discussion of three points of CAES applications. The first one is of importance for theoretical ecology development and is connected with bringing together "holistic" and "merological" approaches in ecosystems studies. Using CAES, we can combine both approaches, taking into account the biotic turnover of limiting substrates which few in number even for complicated natural ecosystems. The second CAES use concerns the development of "ecosystems health" concept and application of a key-factor-approach for the indication and measurement of healthy unhealthy state and functioning of ecosystems or their links. The third use is more of an applied nature, oriented to the intensification of bioremediation or biodepollution processes in different types of ecosystems, including the global biosphere. Grant numbers: N 99-04-96017, N25. 相似文献
158.
M. Durante L. Manti 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200–400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3–4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation on Earth or in space will be discussed. 相似文献
159.
Y. Yamamoto T. Okada H. Shiraishi K. Shirai T. Arai K. Ogawa K. Hosono M. Arakawa M. Kato 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The X-ray spectrometer (XRS) on the SELENE (SELenological and ENgineering Explorer) spacecraft, XRS, will observe fluorescent X-rays from the lunar surface. The energy of the fluorescent X-ray depends on the elements of which the lunar soil consists, therefore we can determine elemental composition of the upper most lunar surface. The XRS consists of three components: XRF-A, SOL-B, and SOL-C. XRF-A is the main sensor to observe X-rays from the lunar surface. SOL-B is direct monitor of Solar X-ray using Si-PIN photodiode. SOL-C is another Solar X-ray monitor but observes the X-rays from the standard sample attached on the base plate. This enables us to analyze by a comparative method similar to typical laboratory XRF methods. XRF-A and SOL-C adopt charge coupled device as an X-ray detector which depletion layer is deep enough to detect X-rays. The X-ray spectra were obtained by the flight model of XRS components, and all components has been worked well to analyze fluorescent X-rays. Currently, development of the hardware and software of the XRS has been finished and we are preparing for system integration test for the launch. 相似文献
160.
M. Amenomori S. Ayabe X.J. Bi D. Chen S.W. Cui Danzengluobu L.K. Ding X.H. Ding C.F. Feng Zhaoyang Feng Z.Y. Feng X.Y. Gao Q.X. Geng H.W. Guo H.H. He M. He K. Hibino N. Hotta Haibing Hu H.B. Hu J. Huang Q. Huang H.Y. Jia F. Kajino K. Kasahara Y. Katayose C. Kato K. Kawata Labaciren G.M. Le A.F. Li J.Y. Li Y.-Q. Lou H. Lu S.L. Lu X.R. Meng K. Mizutani J. Mu K. Munakata A. Nagai H. Nanjo M. Nishizawa M. Ohnishi I. Ohta H. Onuma T. Ouchi S. Ozawa J.R. Ren T. Saito T.Y. Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008