全文获取类型
收费全文 | 192篇 |
免费 | 0篇 |
专业分类
航空 | 164篇 |
航天技术 | 10篇 |
航天 | 18篇 |
出版年
2021年 | 1篇 |
2018年 | 68篇 |
2017年 | 38篇 |
2016年 | 2篇 |
2015年 | 5篇 |
2014年 | 1篇 |
2013年 | 5篇 |
2012年 | 2篇 |
2011年 | 14篇 |
2010年 | 9篇 |
2009年 | 3篇 |
2008年 | 5篇 |
2007年 | 5篇 |
2005年 | 2篇 |
2004年 | 3篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2001年 | 5篇 |
1999年 | 1篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1985年 | 3篇 |
1982年 | 1篇 |
1969年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有192条查询结果,搜索用时 15 毫秒
161.
A. T. Y. Lui C. Jacquey G. S. Lakhina R. Lundin T. Nagai T.-D. Phan Z. Y. Pu M. Roth Y. Song R. A. Treumann M. Yamauchi L. M. Zelenyi 《Space Science Reviews》2005,116(3-4):497-521
The idea of expedient energy transformation by magnetic reconnection (MR) has generated much enthusiasm in the space plasma community. The early concept of MR, which was envisioned for the solar flare phenomenon in a simple two-dimensional (2D) steady-state situation, is in dire need for extension to encompass three-dimensional (3D) non-steady-state phenomena prevalent in space plasmas in nature like in the magnetosphere. A workshop was organized to address this and related critical issues on MR. The essential outcome of this workshop is summarized in this review. After a brief evaluation on the pros and cons of existing definitions of MR, we propose essentially a working definition that can be used to identify MR in transient and spatially localized phenomena. The word “essentially” reflects a slight diversity in the opinion on how transient and localized 3D MR process might be defined. MR is defined here as a process with the following characteristics: (1) there is a plasma bulk flow across a boundary separating regions with topologically different magnetic field lines if projected on the plane of MR, thereby converting magnetic energy into kinetic particle energy, (2) there can be an out-of-the-plane magnetic field component (the so-called guide field) present such that the reconnected magnetic flux tubes are twisted to form flux ropes, and (3) the region exhibiting non-ideal MHD conditions should be localized to a scale comparable to the ion inertial length in the direction of the plasma inflow velocity. This definition captures the most important 3D aspects and preserves many essential characteristics of the 2D case. It may be considered as the first step in the generalization of the traditional 2D concept. As a demonstration on the utility of this definition, we apply it to identify MR associated with plasma phenomena in the dayside magnetopause and nightside magnetotail of the Earth’s magnetosphere. How MR may be distinguished from other competing mechanisms for these magnetospheric phenomena are then discussed.This revised version was published online in July 2005 with a corrected cover date. 相似文献
162.
Paul Morgan Matthias Grott Brigitte Knapmeyer-Endrun Matt Golombek Pierre Delage Philippe Lognonné Sylvain Piqueux Ingrid Daubar Naomi Murdoch Constantinos Charalambous William T. Pike Nils Müller Axel Hagermann Matt Siegler Roy Lichtenheldt Nick Teanby Sharon Kedar 《Space Science Reviews》2018,214(6):104
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be (geq3mbox{--}5~mbox{m}) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission. 相似文献
163.
Martin M. Sirk Eric J. Korpela Yuzo Ishikawa Jerry Edelstein Edward H. Wishnow Christopher Smith Jeremy McCauley Jason B. McPhate James Curtis Travis Curtis Steven R. Gibson Sharon Jelinsky Jeffrey A. Lynn Mario Marckwordt Nathan Miller Michael Raffanti William Van Shourt Andrew W. Stephan Thomas J. Immel 《Space Science Reviews》2017,212(1-2):631-643
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field ((17^{circ}times 12^{circ})) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a imaging resolution perpendicular to the spectral dispersion direction with a large ((12^{circ} )) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of (Rsim25) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements. 相似文献
164.
Andrew W. Stephan R. R. Meier Scott L. England Stephen B. Mende Harald U. Frey Thomas J. Immel 《Space Science Reviews》2018,214(1):42
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives. 相似文献
165.
Vytenis M. Vasyliūnas 《Space Science Reviews》2011,158(1):91-118
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell’s equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm’s law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms. 相似文献
166.
Peter R. Young Hui Tian Hardi Peter Robert J. Rutten Chris J. Nelson Zhenghua Huang Brigitte Schmieder Gregal J. M. Vissers Shin Toriumi Luc H. M. Rouppe van der Voort Maria S. Madjarska Sanja Danilovic Arkadiusz Berlicki L. P. Chitta Mark C. M. Cheung Chad Madsen Kevin P. Reardon Yukio Katsukawa Petr Heinzel 《Space Science Reviews》2018,214(8):120
The term “ultraviolet (UV) burst” is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016–2017. 相似文献
167.
168.
Alberto Adriani Gianrico Filacchione Tatiana Di Iorio Diego Turrini Raffaella Noschese Andrea Cicchetti Davide Grassi Alessandro Mura Giuseppe Sindoni Massimo Zambelli Giuseppe Piccioni Maria T. Capria Federico Tosi Roberto Orosei Bianca M. Dinelli Maria L. Moriconi Elio Roncon Jonathan I. Lunine Heidi N. Becker Alessadro Bini Alessandra Barbis Luciano Calamai Claudio Pasqui Stefano Nencioni Maurizio Rossi Marco Lastri Roberto Formaro Angelo Olivieri 《Space Science Reviews》2017,213(1-4):393-446
JIRAM is an imager/spectrometer on board the Juno spacecraft bound for a polar orbit around Jupiter. JIRAM is composed of IR imager and spectrometer channels. Its scientific goals are to explore the Jovian aurorae and the planet’s atmospheric structure, dynamics and composition. This paper explains the characteristics and functionalities of the instrument and reports on the results of ground calibrations. It discusses the main subsystems to the extent needed to understand how the instrument is sequenced and used, the purpose of the calibrations necessary to determine instrument performance, the process for generating the commanding sequences, the main elements of the observational strategy, and the format of the scientific data that JIRAM will produce. 相似文献
169.
David H. Rodgers Patricia M. Beauchamp Laurence A. Soderblom Robert H. Brown Gun-Shing Chen Meemong Lee Bill R. Sandel David A. Thomas Robert T. Benoit Roger V. Yelle 《Space Science Reviews》2007,129(4):309-326
MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80–185 nm), two high-resolution
visible imagers (10–20 μrad/pixel, 400–900 nm), and a short-wavelength infrared imaging spectrometer (1250–2600 nm). The wavelength ranges were chosen
to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave
spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera
Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments
into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance
at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable,
monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85–140 K) performance, and
provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from
80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators
coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10
kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength
range to be extended by at least an octave at the short wavelength end and to ∼50 microns at the long wavelength end. Testing
of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced
background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra
for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first
clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet’s nucleus. 相似文献
170.
M. Van Der Klis 《Space Science Reviews》1993,62(1-2):173-202
The observational information on X-ray binaries that was collected with the 80 cm2 auxiliary X-ray detector onboard the COS-B gamma-ray satellite is reviewed. The results illustrate that in the study of X-ray binaries observations of long duration are extremely effective, even when using a small instrument. 相似文献