全文获取类型
收费全文 | 192篇 |
免费 | 0篇 |
专业分类
航空 | 164篇 |
航天技术 | 10篇 |
航天 | 18篇 |
出版年
2021年 | 1篇 |
2018年 | 68篇 |
2017年 | 38篇 |
2016年 | 2篇 |
2015年 | 5篇 |
2014年 | 1篇 |
2013年 | 5篇 |
2012年 | 2篇 |
2011年 | 14篇 |
2010年 | 9篇 |
2009年 | 3篇 |
2008年 | 5篇 |
2007年 | 5篇 |
2005年 | 2篇 |
2004年 | 3篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2001年 | 5篇 |
1999年 | 1篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1985年 | 3篇 |
1982年 | 1篇 |
1969年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有192条查询结果,搜索用时 15 毫秒
161.
Richards G.P. Bisignani W.T. Roth S.H. 《IEEE transactions on aerospace and electronic systems》1969,(3):548-557
The results of an experimental investigation of binary error rates in an FSK channel experiencing nonselective fading are presented. For all cases considered, the received frequency uncertainty is large compareded to the bit rate, requiring the use of an envelope detector rather than a matched filter. Both slow and fast fading rates are considered and include the effects of differential Doppler shift between the direct and reflected energy. A simplified mathematical analysis is presented to support the observed results. Both the theoretical examination and the data obtained demonstrate that fast fading and/or differential Doppler generally improve the link error rate performance with respect to the nonfading case. 相似文献
162.
Nathaniel E. Putzig Gareth A. Morgan Bruce A. Campbell Cyril Grima Isaac B. Smith Roger J. Phillips Matthew P. Golombek 《Space Science Reviews》2017,211(1-4):135-146
We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at ({sim} 10mbox{-cm}) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (({<}10mbox{--}20~mbox{m})) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of ({sim} 20mbox{--}43~mbox{m}). 相似文献
163.
164.
Sharon Kedar Jose Andrade Bruce Banerdt Pierre Delage Matt Golombek Matthias Grott Troy Hudson Aaron Kiely Martin Knapmeyer Brigitte Knapmeyer-Endrun Christian Krause Taichi Kawamura Philippe Lognonne Tom Pike Youyi Ruan Tilman Spohn Nick Teanby Jeroen Tromp James Wookey 《Space Science Reviews》2017,211(1-4):315-337
InSight’s Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of (sim1~mbox{mm}) per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels.Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight’s Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence. 相似文献
165.
166.
Astrid Maute 《Space Science Reviews》2017,212(1-2):523-551
The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results. 相似文献
167.
A. A. Baranov A. F. B. de Prado V. Yu. Razumny Anatoly A. BaranovJr. 《Cosmic Research》2011,49(3):269-279
Four types of optimal solutions are demonstrated to exist for transfers (time of flight is not fixed) between close near-circular
coplanar orbits. One solution is realized with the help of fixed orientation of the propulsion system (PS) along a transversal
in the orbital coordinate system. Another is reached at fixed orientation of the PS in the inertial coordinate system. The
third and fourth types of solutions change the PS orientation in the process of executing the maneuver. Regions of existence
are established for all types of solutions, and algorithms for determination of parameters of these maneuvers are suggested.
The algorithms were used to calculate parameters of the maneuvers of transfer from a launching orbit to a working Sun-synchronous
orbit, and to calculate the maneuvers of supporting the parameters of such an orbit in a specified range. 相似文献
168.
Ross A. Beyer 《Space Science Reviews》2017,211(1-4):97-107
Photoclinometry was used to analyze the small-scale roughness of areas within the proposed Mars InSight landing ellipse. The landing ellipse presented in this study is in Elysium Planitia.This study was able to constrain surface slopes on length scales comparable to the HiRISE image resolution (0.25 meters/pixel and coarser). The InSight mission has various engineering constraints that each candidate landing ellipse must satisfy. These constraints indicate that the statistical value of the slopes at one, two, and five meter baselines are an important criterion. This technique estimates surface slopes across large swaths of each image, and builds up slope statistics for the images in the landing ellipse. The slopes I derived for the InSight landing site ellipse in this study are within the small-scale roughness constraints put forth by the InSight project. These results have provided input into the landing hazard assessment process. 相似文献
169.
M. Van Der Klis 《Space Science Reviews》1993,62(1-2):173-202
The observational information on X-ray binaries that was collected with the 80 cm2 auxiliary X-ray detector onboard the COS-B gamma-ray satellite is reviewed. The results illustrate that in the study of X-ray binaries observations of long duration are extremely effective, even when using a small instrument. 相似文献
170.
E.A. Roth 《Acta Astronautica》1985,12(2):71-80
In this paper the stroboscopic method is applied to the equinoctial elements which avoid the singularities of circular and/or equatorial orbits. The Lagrange equations for the variation of parameters are formulated using respectively one of the three longitudes as fast angular variable. It is shown how the first-order theory of the stroboscopic method can be developed. The perturbation by the gravity potential of the central body and the third-body perturbation are considered in detail. The paper concludes with a few analytical results. 相似文献