This paper presents some approaches to the development of advanced detectors and to miniaturized instrument design which are pursued in the Institute of Space Sensor Technology of DLR (the German Aerospace Research Establishment). The instrument design approach is demonstrated for a low-weight (3 kg) dual camera system with narrow-angle in-track stereo and wide-angle multispectral features. Each camera has its own signal processor and 0,5 G Bit mass memory. The activities for advanced detector development are concentrated on two different kinds of detectors and instrumentations: infrared detector arrays and instruments at wavelengths out to about 240 μm, and superheterodyne receivers in the submillimeter and far-infrared spectral ranges. 相似文献
EUVITA is a set of 8 extreme UV normal incidence imaging telescopes, each of them sensitive in a narrow band (λ/Δλ = 15 to 80), centered at wavelengths between 50 and 175 Å. Each telescope has an effective area of a few cm2; a field of view of 1.2° and a spatial resolution of 10 arcsec.
EUVITA will be flown on the Russian mission SPECTRUM X-G. This satellite will be launched in a highly eccentric orbit with a period of 4 days, allowing long, uninterrupted observations (e.g. 105 seconds). EUVITA's narrow spectral bands allow the measurement of source parameters such as temperature or power law index as well as interstellar absorption, and will resolve groups of strong lines emitted by optically thin hot plasmas. 相似文献
The Hopkins Ultraviolet Telescope (HUT) was flown aboard the space shuttle Columbia as part of the Astro-1 mission during December 1990. During the nine-day flight, HUT carried out 3 Å resolution spectrophotometry of a wide variety of astronomical objects, including a number of stellar targets, in the 912–1860 Å range of the far ultraviolet. A few nearby stars were observed in the 415–912 Å range of the extreme ultraviolet as well. For nearly all of these targets, the spectra obtained by HUT are the first ever obtained in the spectroscopically rich region between Lyman (1216 Å) and the Lyman limit (912 Å). Here, we present highlights of the results obtained by HUT in a variety of areas of stellar astronomy. 相似文献
Hard X-ray observations of Cyg X-3 in the energy range 20–100 keV were made with a Balloon-borne telescope using two large area proportional counters. The source was seen with a total significance of 20.
A 121 s periodicity was seen during Fourier analysis of the data. The phenomenon can be interpreted as due to transient pulsation since no other peak was seen in our data. Quasi-periodic oscillation in the range 0.06–20 mHz have been observed from Cyg X-3 at lower energies. Interestingly, most of the reported periods are multiple of the present measurements. The observed pulsation at high energies indicate the occasional unstable behaviour of the inner parts of the accretion disk connected with the basic rotation period of the compact object.
The 4.8h modulation, characteristic of the orbital period of the binary system was seen in the data, with a broad maximum between the phase 0.3 to 0.7. 相似文献
The French earth observation satellite SPOT-2 has served as a testbed for precise orbit determination from DORIS doppler tracking in anticipation of the TOPEX/Poseidon mission. Using the most up-to-data gravity field model, JGM-2, a radial orbit accuracy of about 2–9 cm was achieved, with an rms of fit of the tracking data of about 0.64 mm/s. Furthermore, it was found that the coordinates of the ground stations can be determined with an accuracy of the order of 2–5 cm after removal of common rotations, and translations.
Using a slightly different model for atmospheric drag, but the same gravity model, precise orbits of TOPEX/Poseidon from DORIS tracking data were determined with a radial orbit accuracy of the order of 4–5 cm, which is far within the 13 cm mission requirement. This conclusion is based on the analysis of 1-day overlap of successive 11-day orbits, and the comparisons with orbits computed from satellite laser tracking (SLR) and from the combination of SLR and DORIS tracking. Results indicate a consistency between the different orbits of 1–4 cm, 4–20 cm, and 6–13 cm in the radial, cross-track, and along-track directions, respectively. The residual rms is about 4–5 cm for SLR data and 0.56 mm/s for DORIS tracking. These numbers are roughly twice as large as the system noise levels, reflecting the fact that there are still some modeling errors left. 相似文献
The entry of energetic solar protons to the polar caps offers an interesting way to test models of the geomagnetic field. In this brief report, we present a comparison between SAMPEX observations of solar-particle intensity structure during a polar cap traversal with numerical trajectory calculations using the IGRF + T96 field model. 相似文献