首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   0篇
  国内免费   1篇
航空   57篇
航天技术   59篇
航天   34篇
  2021年   7篇
  2019年   6篇
  2018年   11篇
  2017年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   13篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2006年   2篇
  2005年   9篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   9篇
  1983年   2篇
  1982年   3篇
  1981年   13篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
111.
The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.  相似文献   
112.
This paper contemplates the efforts and developments in the field of sounding rockets carried out in Spain from the decade of the 1960s to the early 1990s when the use of such vehicles was abandoned worldwide.The initial sounding rocket planning within the National Space Research Programs around 1964 (when Spain joined ESRO) is presented.The status of the rocket technology in Spain in 1964 is analysed, reviewing the main technology gaps and the way they were filled to make the planned developments possible.Three Spanish sounding rockets are presented: the INTA-255 (150 km apogee with formative objectives, first launched in 1969), the INTA-300 (300 km apogee with high characteristics and commercial capabilities, first launched in 1974) and the INTA-100 (115 km apogee being finally a totally national product, first launched in 1980).Some guided rocket vehicle projects which were based, on some way, on the previous sounding rockets activities are also mentioned in this paper.  相似文献   
113.
Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.  相似文献   
114.
115.
The Student Dust Counter (SDC) experiment of the New Horizons Mission is an impact dust detector to map the spatial and size distribution of dust along the trajectory of the spacecraft across the solar system. The sensors are thin, permanently polarized polyvinylidene fluoride (PVDF) plastic films that generate an electrical signal when dust particles penetrate their surface. SDC is capable of detecting particles with masses m>10?12 g, and it has a total sensitive surface area of about 0.1 m2, pointing most of the time close to the ram direction of the spacecraft. SDC is part of the Education and Public Outreach (EPO) effort of this mission. The instrument was designed, built, tested, integrated, and now is operated by students.  相似文献   
116.
It was 100 years ago (on August 7, 1920), that the comprehensive mathematical foundations of climate change research, written by a Serbian researcher, Milutin Milankovitch, were published. A later interpreter and developer of his results, Georg (in Hungarian: György) Bacsák (Pozsony/Pressburg/Bratislava, June 5, 1870 - Fonyód, March 4, 1970) was born 150 years ago and died at the age of one hundred, half a century ago. In this commemorative paper we look back to special circumstances in revealing the secrets of ice ages that had puzzled scientists for at least several centuries. Recently, after 100 years, the Milankovitch theory, including related short-term forcings (ranging from interannual, multidecadal to millennial timescales) has not only been confirmed, but its climate forcing mechanism has also been identified and proposed. Owing to the uniqueness of the problem, the science of the orbital forcing of climate change can be proclaimed to be essentially settled.  相似文献   
117.
Compressional waves propagating in the partially ionised solar lower atmospheric plasmas can easily steepen into nonlinear waves, including shocks. Here we investigate the effect of weak dispersion generated by Hall currents perpendicular to the ambient magnetic field on the characteristics of shock waves. Our study will also focus on the interplay between weak dispersion and partial ionisation of the plasma. Using a multiple scale technique we derive the governing equation in the form of a Korteweg-de Vries-Burgers equation. The effect of weak dispersion on shock waves is obtained using a perturbation technique. The secular behaviour of second order terms is addressed with the help of a renormalization technique. Our results show that dispersion modifies the characteristics of shock waves and this change is dependent also on the ionisation degree of the plasma. Dispersion can create short lived oscillations in the shocked plasma. The shock fronts become wider with the increase in the number of neutrals in the plasma.  相似文献   
118.
Due to the presence of water vapour and cloud liquid water in the atmosphere, the wet component of the troposphere is responsible for a delay in the propagation of the altimeter signals, the Wet Path Delay (WPD). The high space–time variability of the water vapour distribution makes the modelling of WPD difficult, its effect still being one of the main error sources in satellite altimetry applications, e.g. in the estimation of Mean Sea Level (MSL). The understanding and the quantification of the WPD variability on various spatial and temporal scales are the main purposes of this study, in view to improve the MSL error budget. The dominant timescales of WPD variability and its correlation with Sea Level Anomaly (SLA) are examined. In these analyses, the atmospheric reanalysis ERA-Interim model from the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to derive a global dataset of daily grids of WPD, spanning a 28-year period from January 1988 to December 2015. The Seasonal-Trend decomposition procedure based on Loess (STL) is used to extract precise WPD annual and interannual signals. Linear trends have been derived from the interannual time series and the contribution of each STL component was mapped globally, allowing the understanding of the WPD variability in spatial terms. The correlation between SLA and WPD is mapped and decomposed into seasons using monthly mean grids, for a period of 21-years, from January 1993 to December 2013.Aiming at inspecting the sensitivity of the results to the used data set, the WPD temporal analysis is extended to the data set provided by the Special Sensor Microwave Imager (SSM/I) and SSM/I Sounder (SSM/IS) Sensors. The WPD from SSM/I(S) is compared against those from the ERA-Interim and from the National Centers for Environmental Prediction (NCEP).Results show that climate phenomena, especially the El Niño Southern Oscillation (ENSO) are the cause for this high variability, since they affect the water vapour and temperature. The observed trends from ERA-Interim, computed globally and over ocean regions only, allow concluding that WPD is increasing with time by approximately 0.1?mm per year, and the maximum trends are observed for the Pacific North and Indian Oceans. High correlation between WPD and SLA is found over the western tropical Pacific.The comparison between WPD from SSM/I(S) and from ERA-Interim and NCEP, allows concluding that the trends computed using only the SSM/I(S) measurement points are substantially larger.  相似文献   
119.
The dual-frequency satellite-based measurements from Global Positioning System (GPS) may provide feasible ways of studying and potentially detecting of earthquake (EQ) related anomalies in the ionosphere. In this paper, GPS based Total Electron Content (TEC) data are studied for three major M?>?7.0 EQs in Nepal and Iran-Iraq border during 2015–2017 by implementing statistical procedures on temporal and spatial scale. Previous studies presented different time interval of pre-seismic ionospheric anomalies, however, this study showed that EQs ionospheric precursors may occur within 10?days. Furthermore, the ionospheric anomalies on the suspected day occurred during UT?=?08:00–12:00?h before the main shock. The Global Ionospheric Map TEC (GIM-TEC) data retrieved over the epicenter of M7.8 (Nepal EQ) showed a significant increase of 6 TECU on April 24, 2015 (one day before the main shock), which is recorded by the ground GPS station data of Islamabad (station lies within the EQ preparation zone). Furthermore, the spatial GIM-TEC result imply significant anomalies over the epicenter during the time interval between UT?=?08:00–12:00?h (LT?=?13:00–17:00). For M7.3 (Nepal EQ), the TEC anomalies were detected on May 10, 2015 (2?days before the event) in the temporal data. The spatial TEC data imply the huge clouds over the epicenter at about UT?=?08:00–12:00?h on May 10, 2015, that may be associated with this EQ in the quiet geomagnetic storm conditions. Similarly, temporal and spatial TEC showed anomaly on November 3, 2017, during UT?=?08:00–12:00 (9?days before the Iran-Iraq border EQ) after implementing the statistical method on it. Conversely, there exists a short-term but low magnitude TEC anomaly synchronized with a geomagnetic storm on November 7–8, 2017 (4 to 5?days prior to M7.3 Iran-Iraq border EQ). The diurnal and hourly GIM-TEC and VTEC data also imply the execution of ionospheric anomalies within 10?days prior to all events. All these positive anomalies in TEC may be due to the existence of a huge energy from the epicenter during the EQ preparation period.  相似文献   
120.
Old-aged stellar distance indicators are present in all Galactic structures (halo, bulge, disk) and in galaxies of all Hubble types and, thus, are immensely powerful tools for understanding our Universe. Here we present a comprehensive review for three primary standard candles from Population II: (i) RR Lyrae type variables (RRL), (ii) type II Cepheid variables (T2C), and (iii) the tip of the red giant branch (TRGB). The discovery and use of these distance indicators is placed in historical context before describing their theoretical foundations and demonstrating their observational applications across multiple wavelengths. The methods used to establish the absolute scale for each standard candle is described with a discussion of the observational systematics. We conclude by looking forward to the suite of new observational facilities anticipated over the next decade; these have both a broader wavelength coverage and larger apertures than current facilities. We anticipate future advancements in our theoretical understanding and observational application of these stellar populations as they apply to the Galactic and extragalactic distance scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号