首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
航空   36篇
航天技术   8篇
航天   24篇
  2018年   3篇
  2017年   3篇
  2015年   2篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   9篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1992年   4篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1980年   2篇
  1977年   2篇
  1975年   1篇
  1968年   2篇
  1967年   4篇
  1966年   1篇
排序方式: 共有68条查询结果,搜索用时 46 毫秒
61.
We report on the development of a passive sorption pump, capable of maintaining high-vacuum conditions in the InSight seismometer throughout the duration of any extended mission. The adsorber material is a novel zeolite-loaded aerogel (ZLA) composite, which consists of fine zeolite particles homogeneously dispersed throughout a porous silica network. The outgassing species within the SEIS evacuated container were analyzed and the outgassing rate was estimated by different methods. The results were used to optimize the ZLA composition to adsorb the outgassing constituents, dominated by water, while minimizing the SEIS bakeout constraints. The InSight ZLA composite additionally facilitated substantial CO2 adsorption capabilities for risk mitigation against external leaks in Mars atmosphere. To comply with the stringent particle requirements, the ZLA getters were packaged in sealed containers, open to the SEIS interior through \(1~\upmu\mbox{m}\)-size pore filters. Results from experimental validation and verification tests of the packaged getters are presented. The pressure forecast based on these data, corroborated by rudimentary in situ pressure measurements, infer SEIS operational pressures not exceeding \(10^{-5}~\mbox{mbar}\) throughout the mission.  相似文献   
62.
We propose the use of prime sequences in pulse repetition agile radar to increase the immunity of the radar to reconnaissance and deceptive jamming. The prime sequences are mapped into state agile mapped (SAM) sequences and are used to determine the pulse repetition interval (PRI) of the radar. We show that this produces a system with low mutual interference between radars and with a low probability of ambiguous range measurement resulting in good resistance to active deceptive jamming  相似文献   
63.
The overall objective of this experiment is exploratory reconnaissance of Jupiter, Saturn, their satellites, and Saturn's rings. Such reconnaissance, at resolutions and phase angles unobtainable from Earth, can be expected to provide much new data relevant to the atmospheric and/or surface properties of these bodies. The experiment also has the following specific objectives:Observe and characterize the global circulation of the atmospheres of Jupiter and Saturn;Determine the horizontal and vertical structure of the visible clouds and establish their relationship to the belted appearance and dynamical properties of the planetary atmospheres;Determine the vertical structure of high, optically-thin, scattering layers on Jupiter and Saturn;Determine the nature of anomalous features such as the Great Red Spot, South Equatorial Belt disturbances, etc.;Characterize the nature of the colored material in the clouds of Jupiter and Saturn, and identify the nature and sources of chromophores on Io and Titan;Perform comparative geologic studies of many satellites at less than 15-km resolution;Map and characterize the geologic structure of several satellites at high resolution (1 km);Investigate the existence and nature of atmospheres on the satellites;Determine the mass, size, and shape of many of the satellites by direct measurement;Determine the direction of the spin axes and periods of rotation of several satellites, and establish coordinate systems for the larger satellites;Map the radial distribution of material in Saturn's rings at high resolution;Determine the optical scattering properties of the primaries, rings, and satellites at several wavelengths and phase angles;Search for novel physical phenomena, e.g., phenomena associated with the Io flux tube, meteors, aurorae, lightning, or satellite shadows.Team leader.Deputy team leader.  相似文献   
64.
EDISON, a large-aperture, radiatively-cooled telescope, is proposed as the major international mission to follow the current generation of cryogenically-cooled infrared space telescopes. It is being studied at present as a 2.5–3.5 m mixed radiatively- and mechanically-cooled facility optimized to investigate the wavelength range 3–100+ m. This paper outlines the status of the project, discusses some aspects of a smaller-aperture precursor mission, and describes a portion of the baseline science mission.  相似文献   
65.
The use of biphase modulation and Barker data coding within the 200-us range/Doppler transmission proposed for collision avoidance systems (CAS) is described. Following a general discussion of requirements for compatibility between important CAS threat-evaluation measurements and less essential message communications, emphasis is placed on consideration of the binary Barker pulse sequences and the recommended biphase modulation techniques for data transmission.  相似文献   
66.
Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.  相似文献   
67.
68.
In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号