首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
航空   36篇
航天技术   8篇
航天   24篇
  2018年   3篇
  2017年   3篇
  2015年   2篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   9篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1992年   4篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1980年   2篇
  1977年   2篇
  1975年   1篇
  1968年   2篇
  1967年   4篇
  1966年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
51.
We divide the history of water on the Martian surface into four epochs based upon the atmospheric temperature and pressure. In Epoch 1, during which a primordial CO2 atmosphere was actively maintained by impact and volcanic recycling, we presume the mean annual temperature to have been above freezing, the pressure to have exceeded one atmosphere, and liquid water to have been widespread. Under such conditions, similar to early Earth, life could have arisen and become abundant. After this initial period of recycling, atmospheric CO2 was irreversibly lost due to carbonate formation and the pressure and temperature declined. In Epoch II, the mean annual temperature fell below freezing but peak temperatures would have exceeded freezing. Ice covered lakes, similar to those in the McMurdo Dry Valleys of Antarctica could have provided a habitat for life. In Epoch III, the mean and peak temperatures were below freezing and there would have been only transient liquid water. Microbial ecosystems living in endolithic rock "greenhouses" could have continued to survive. Finally, in Epoch IV, the pressure dropped to near the triple point pressure of water and liquid water could no longer have existed on the surface and life on the surface would have become extinct.  相似文献   
52.
A comprehensive observational sequence using the Deep Impact (DI) spacecraft instruments (consisting of cameras with two different focal lengths and an infrared spectrometer) will yield data that will permit characterization of the nucleus and coma of comet Tempel 1, both before and after impact by the DI Impactor. Within the constraints of the mission system, the planned data return has been optimized. A subset of the most valuable data is planned for return in near-real time to ensure that the DI mission success criteria will be met even if the spacecraft should not survive the comet’s closest approach. The remaining prime science data will be played back during the first day after the closest approach. The flight data set will include approach observations spanning the 60 days prior to encounter, pre-impact data to characterize the comet at high resolution just prior to impact, photos from the Impactor as it plunges toward the nucleus surface (including resolutions exceeding 1 m), sub-second time sampling of the impact event itself from the Flyby spacecraft, monitoring of the crater formation process and ejecta outflow for over 10 min after impact, observations of the interior of the fully formed crater at spatial resolutions down to a few meters, and high-phase lookback observations of the nucleus and coma for 60 h after closest approach. An inflight calibration data set to accurately characterize the instruments’ performance is also planned. A ground data processing pipeline is under development at Cornell University that will efficiently convert the raw flight data files into calibrated images and spectral maps as well as produce validated archival data sets for delivery to NASA’s Planetary Data System within 6 months after the Earth receipt for use by researchers world-wide.  相似文献   
53.
The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.  相似文献   
54.
55.
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.  相似文献   
56.
The importance of solar cells for space power supplies continues with increased emphasis. The need for advances in the design of solar cell arrays becomes more pressing as the requirement for increased power levels is apparent. This paper discusses a flexible solar cell concept, includes a brief history of the development, describes a conceptual design for a 20-kW array, giving weight breakdown, and describes an existing design effort.  相似文献   
57.
We propose the use of prime sequences in pulse repetition agile radar to increase the immunity of the radar to reconnaissance and deceptive jamming. The prime sequences are mapped into state agile mapped (SAM) sequences and are used to determine the pulse repetition interval (PRI) of the radar. We show that this produces a system with low mutual interference between radars and with a low probability of ambiguous range measurement resulting in good resistance to active deceptive jamming  相似文献   
58.
In order to get the maximum scientific return from available resources, the wave experimenters on Cluster established the Wave Experiment Consortium (WEC). The WEC's scientific objectives are described, together with its capability to achieve them in the course of the mission. The five experiments and the interfaces between them are shown in a general block diagram (Figure 1). WEC has organised technical coordination for experiment pre-delivery tests and spacecraft integration, and has also established associated working groups for data analysis and operations in orbit. All science operations aspects of WEC have been worked out in meetings with wide participation of investigators from the five WEC teams.  相似文献   
59.
We report on the development of a passive sorption pump, capable of maintaining high-vacuum conditions in the InSight seismometer throughout the duration of any extended mission. The adsorber material is a novel zeolite-loaded aerogel (ZLA) composite, which consists of fine zeolite particles homogeneously dispersed throughout a porous silica network. The outgassing species within the SEIS evacuated container were analyzed and the outgassing rate was estimated by different methods. The results were used to optimize the ZLA composition to adsorb the outgassing constituents, dominated by water, while minimizing the SEIS bakeout constraints. The InSight ZLA composite additionally facilitated substantial CO2 adsorption capabilities for risk mitigation against external leaks in Mars atmosphere. To comply with the stringent particle requirements, the ZLA getters were packaged in sealed containers, open to the SEIS interior through \(1~\upmu\mbox{m}\)-size pore filters. Results from experimental validation and verification tests of the packaged getters are presented. The pressure forecast based on these data, corroborated by rudimentary in situ pressure measurements, infer SEIS operational pressures not exceeding \(10^{-5}~\mbox{mbar}\) throughout the mission.  相似文献   
60.
Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (~500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号