首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
航空   26篇
航天技术   5篇
航天   19篇
  2018年   3篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1968年   2篇
  1967年   4篇
  1966年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
21.
The PRSD detector improves radar performance by controlling the distribution of energy in space, thus making a radar adaptive to its environment. An increase in performance over classical detectors may be realized in any of several ways: 1) greater maximum range; 2) smaller minimum detectable targets; 3) higher data rates; 4) lower average transmitted power, which allows smaller size and weight of equipment. The model of the PRSD detector described herein was tested with a semi-agile beam radar, and gave measured field performance improvement (for this particular radar) equivalent to an S/N increase ranging from 5 to 22 dB with a mean of 9.5 dB. This increase is greater than the 5-dB improvement predicted for the system in a white noise environment because many of the field tests were at locations subjected to heavy interference. The PRSD detector was extremely effective reducing the interference. In this paper, we will briefly review the theory of operation, describe the equipment and the method of test, and present experimental data. The data presented here are essential to a complete understanding of sequential detection since a rigorous theory encompassing multiple range bin radar has not been developed at this time. Finally, an extensive bibliography is appended.  相似文献   
22.
The Dawn spacecraft is designed to travel to and operate in orbit around the two largest main belt asteroids, Vesta and Ceres. Developed to meet a ten-year life and fully redundant, the spacecraft accommodates an ion propulsion system, including three ion engines and xenon propellant tank, utilizes large solar arrays to power the engines, carries the science instrument payload, and hosts the hardware and software required to successfully collect and transmit the scientific data back to Earth. The launch of the Dawn spacecraft in September 2007 from Cape Canaveral Air Force Station was the culmination of nearly five years of design, development, integration and testing of this unique system, one of the very few scientific spacecraft to rely on ion propulsion. The Dawn spacecraft arrived at its first destination, Vesta, in July 2011, where it will conduct science operations for twelve months before departing for Ceres.  相似文献   
23.
Experimentally determined values of open-circuit voltage, short-circuit current, and maximum power for p on n and n on p silicon solar cells are presented for temperatures ranging from -196°C to + 50°C under equivalent space sunlight intensities of 58 mW/cm2 and 268 mW/cm2. An anomalous behavior is observed in the n on p cells at low temperatures; namely, the open-circuit voltage becomes nearly independent of temperature below a transition temperature Tt that depends on the sunlight intensity.  相似文献   
24.
The end of the Cold War has allowed the proposal for a World Space Agency, originally proposed by the USSR, to be given serious consideration. There are clearly benefits that could accrue from the emergence of such an organization. Nevertheless it would be premature to establish it now. Rather, current efforts should be directed towards fashioning structures and activities that could serve as solid building blocks for a permanent global space institution.  相似文献   
25.
Optical orbital debris spotter   总被引:1,自引:0,他引:1  
The number of man-made debris objects orbiting the Earth, or orbital debris, is alarmingly increasing, resulting in the increased probability of degradation, damage, or destruction of operating spacecraft. In part, small objects (<10 cm) in Low Earth Orbit (LEO) are of concern because they are abundant and difficult to track or even to detect on a routine basis. Due to the increasing debris population it is reasonable to assume that improved capabilities for on-orbit damage attribution, in addition to increased capabilities to detect and track small objects are needed. Here we present a sensor concept to detect small debris with sizes between approximately 1.0 and 0.01 cm in the vicinity of a host spacecraft for near real time damage attribution and characterization of dense debris fields and potentially to provide additional data to existing debris models.  相似文献   
26.
A simple method is described for displaying and auto scaling the basic ionogram parameters foF2 and h’F2 as well as some additional layer parameters from digital ionograms. The technique employed is based on forming frequency and height histograms in each ionogram. This technique has now been applied specifically to ionograms produced by the IPS5D ionosonde developed and operated by the Australian Space Weather Service (SWS). The SWS ionograms are archived in a cleaned format and readily available from the SWS internet site. However, the method is applicable to any ionosonde which produces ionograms in a digital format at a useful signal-to-noise level. The most novel feature of the technique for autoscaling is its simplicity and the avoidance of the mathematical imaging and line fitting techniques often used. The program arose from the necessity to display many days of ionogram output to allow the location of specific types of ionospheric event such as ionospheric storms, travelling ionospheric disturbances and repetitive ionospheric height changes for further investigation and measurement. Examples and applications of the method are given including the removal of sporadic E and spread F.  相似文献   
27.
The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.  相似文献   
28.
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth’s limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.  相似文献   
29.
This paper describes an aspect system flown on PIONEERS VI and VII2 which incorporates an extremely accurate adaptive digital computer in order to define rigorously equal time intervals which are submultiples of the spacecraft spin period. The several submultiples which compose the complete spin period exhibit equality to within 2.5 parts in 105. This system has potential applications in other experiments involving the study of the angular dependence of cosmic radiation and other physical phenomena being measured by a single directional detector mounted on spin-stabilized spacecraft. Included here are the scientific goals for this experiment, system restraints, and the generalized system operation. Some details on specific logic and hardware implementation for the Pioneer experiments are included along with in-flight performance evaluation of the system aboard PIONEER VI.  相似文献   
30.
Mars Science Laboratory Mission and Science Investigation   总被引:5,自引:0,他引:5  
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号