排序方式: 共有181条查询结果,搜索用时 15 毫秒
91.
Felix Bissig Amir Khan Martin van Driel Simon C. Stähler Domenico Giardini Mark Panning Mélanie Drilleau Philippe Lognonné Tamara V. Gudkova Vladimir N. Zharkov Ana-Catalina Plesa William B. Banerdt 《Space Science Reviews》2018,214(8):114
The InSight mission to Mars is well underway and will be the first mission to acquire seismic data from a planet other than Earth. In order to maximise the science return of the InSight data, a multifaceted approach will be needed that seeks to investigate the seismic data from a series of different frequency windows, including body waves, surface waves, and normal modes. Here, we present a methodology based on globally-averaged models that employs the long-period information encoded in the seismic data by looking for fundamental-mode spheroidal oscillations. From a preliminary analysis of the expected signal-to-noise ratio, we find that normal modes should be detectable during nighttime in the frequency range 5–15 mHz. For improved picking of (fundamental) normal modes, we show first that those are equally spaced between 5–15 mHz and then show how this spectral spacing, obtained through autocorrelation of the Fourier-transformed time series can be further employed to select normal mode peaks more consistently. Based on this set of normal-mode spectral frequencies, we proceed to show how this data set can be inverted for globally-averaged models of interior structure (to a depth of \(\sim 250~\mbox{km}\)), while simultaneously using the resultant synthetically-approximated normal mode peaks to verify the initial peak selection. This procedure can be applied iteratively to produce a “cleaned-up” set of spectral peaks that are ultimately inverted for a “final” interior-structure model. To investigate the effect of three-dimensional (3D) structure on normal mode spectra, we constructed a 3D model of Mars that includes variations in surface and Moho topography and lateral variations in mantle structure and employed this model to compute full 3D waveforms. The resultant time series are converted to spectra and the inter-station variation hereof is compared to the variation in spectra computed using different 1D models. The comparison shows that 3D effects are less significant than the variation incurred by the difference in radial models, which suggests that our 1D approach represents an adequate approximation of the global average structure of Mars. 相似文献
92.
Naomi Murdoch David Mimoun Raphael F. Garcia William Rapin Taichi Kawamura Philippe Lognonné Don Banfield W. Bruce Banerdt 《Space Science Reviews》2017,211(1-4):429-455
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement (>97~%) of the time and is, therefore, not expected to endanger the InSight mission objectives. 相似文献
93.
Pierre Delage Foivos Karakostas Amine Dhemaied Malik Belmokhtar Philippe Lognonné Matt Golombek Emmanuel De Laure Ken Hurst Jean-Claude Dupla Sharon Kedar Yu Jun Cui Bruce Banerdt 《Space Science Reviews》2017,211(1-4):191-213
In support of the InSight mission in which two instruments (the SEIS seismometer and the \(\mbox{HP}^{3}\) heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the \(\sim1.3~\mbox{Mg/m}^{3}\) density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing. 相似文献
94.
Vladimir A. Krasnopolsky Jason B. Greenwood Philip C. Stancil 《Space Science Reviews》2004,113(3-4):271-373
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80 000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/δE ≈ 1.5-3) instruments and focused on the morphology of xrays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.This revised version was published online in July 2005 with a corrected cover date. 相似文献
95.
There have been many significant advances in understanding magnetic field reconnection as a result of improved space measurements and two-dimensional computer simulations. While reviews of recent work have tended to focus on symmetric reconnection on ion and larger spatial scales, the present review will focus on asymmetric reconnection and on electron scale physics involving the reconnection site, parallel electric fields, and electron acceleration. 相似文献
96.
Farzad Kamalabadi Jianqi Qin Brian J. Harding Dimitrios Iliou Jonathan J. Makela R. R. Meier Scott L. England Harald U. Frey Stephen B. Mende Thomas J. Immel 《Space Science Reviews》2018,214(4):70
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere. 相似文献
97.
Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery. 相似文献
98.
为实现飞机外表面的机器人自动化喷涂,根据飞机外表面的几何特征,提出了飞机表面喷涂轨迹的规划方案和自动化喷涂作业的定位方法。根据该方法制订了多层次的喷涂控制程序结构,包括主逻辑层、控制程序层、辅助功能层3个层次。主逻辑层负责整个程序体系运行的调度,即调用控制程序层和辅助功能层中的功能模块;控制程序层包含飞机表面的分区及相应的喷涂控制程序模块;辅助功能层包括喷涂工艺参数、运动参数、系统默认参数等内容。为快速生成多层次喷涂程序体系,提出了面向飞机外表面喷涂的离线编程技术方案。以飞机模型表面喷涂为例,验证了方法的有效性和可维护性。 相似文献
99.
L. Abbo L. Ofman S. K. Antiochos V. H. Hansteen L. Harra Y.-K. Ko G. Lapenta B. Li P. Riley L. Strachan R. von Steiger Y.-M. Wang 《Space Science Reviews》2016,201(1-4):55-108
While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled “Slow solar wind sources and acceleration mechanisms in the corona” held in Bern (Switzerland) in March 2014 and 2015. 相似文献
100.
Caitlin J. Ahrens William M. Grundy Kathleen E. Mandt Paul D. Cooper Orkan M. Umurhan Vincent F. Chevrier 《Space Science Reviews》2018,214(8):130
This review of Pluto laboratory research presents some of the recent advancements and motivations in our understanding enabled by experimental simulations, the need for experiments to facilitate models, and predictions for future laboratory work. The spacecraft New Horizons at Pluto has given a large amount of scientific data already rising to preliminary results, spanning from the geology to the atmosphere. Different ice mixtures have now been detected, with the main components being nitrogen, methane, and carbon monoxide. Varying geology and atmospheric hazes, however, gives us several questions that need to be addressed to further our understanding. Our review summarizes the complexity of Pluto, the motivations and importance of laboratory simulations critical to understanding the low temperature and pressure environments of icy bodies such as Pluto, and the variability of instrumentation, challenges for research, and how simulations and modeling are complimentary. 相似文献