首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4602篇
  免费   11篇
  国内免费   15篇
航空   1911篇
航天技术   1756篇
综合类   22篇
航天   939篇
  2021年   43篇
  2019年   33篇
  2018年   117篇
  2017年   77篇
  2016年   79篇
  2015年   31篇
  2014年   119篇
  2013年   135篇
  2012年   125篇
  2011年   183篇
  2010年   136篇
  2009年   222篇
  2008年   292篇
  2007年   140篇
  2006年   116篇
  2005年   125篇
  2004年   131篇
  2003年   161篇
  2002年   109篇
  2001年   163篇
  2000年   84篇
  1999年   94篇
  1998年   110篇
  1997年   82篇
  1996年   103篇
  1995年   120篇
  1994年   118篇
  1993年   66篇
  1992年   99篇
  1991年   44篇
  1990年   41篇
  1989年   99篇
  1988年   36篇
  1987年   44篇
  1986年   45篇
  1985年   151篇
  1984年   95篇
  1983年   83篇
  1982年   101篇
  1981年   138篇
  1980年   43篇
  1979年   44篇
  1978年   32篇
  1977年   30篇
  1976年   21篇
  1975年   24篇
  1974年   28篇
  1973年   23篇
  1972年   16篇
  1970年   15篇
排序方式: 共有4628条查询结果,搜索用时 0 毫秒
71.
When discussing problems related to medical service in space flight, particular attention should be given to the specific living conditions and changes associated with space flight. In disease and injury, surgery can be provided only after conservative therapy has failed. In this context gnotobiological chambers allowing surgery in aseptic conditions seem promising. A portable set of interchangeable surgical tools should be made of light-weight alloys that can be readily sterilized. Electroanalgesia in combination with auriculoacupuncture as well as peridureal anesthesia may be used as they allow normal operations in autonomous space flight conditions. Changes in the sympatho-adrenal and kallikrein-kinin systems, as well as water-electrolyte balance, should be taken into account in developing methods and means of medical service in critical situations. Special attention should be given to the prevention and treatment of brain edema in view of weightlessness-induced cephalad fluid shifts.  相似文献   
72.
73.
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.  相似文献   
74.
Engineering concepts for inflatable Mars surface greenhouses.   总被引:1,自引:0,他引:1  
A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting.  相似文献   
75.
PLANET-B is the Japanese Mars orbiter program. The primary objective of the program is to study the Martian aeronomy, putting emphasis on the interaction of the Martian upper atmosphere with the solar wind. The launch of the spacecraft is scheduled for August, 1998. The periapsis altitude and the apoapsis are 150 km and 15 Mars radii, respectively. The dry weight of the orbiter is 186 kg including 14 science instruments. Advanced technologies are employed in the design of the spacecraft in order to overcome the weight limitation. This paper describes the scientific objectives of the PLANET-B program and outline of the spacecraft system.  相似文献   
76.
The viewpoint of working group of Russian experts on the problem of planetary protection for future manned and unmanned Mars mission is presented. Recent data of Martian environment and on survival of terrestrial microorganisms in extreme conditions were used for detailed analysis and overview of planetary protection measures in regard to all possible flight situations including accidental landing. The special emphasis on "Mars-94" mission was done. This analysis resulted in revised formulation of spacecraft sterilization requirements and possible measures for their best implementation. New general combined approach to spacecraft sterilization was proposed. It includes penetrating radiation and heat treatment of spacecraft parts and components which is to be carried out before the final assembly of spacecraft and gaseous radiation sterilization of the whole spacecraft during the flight to Mars (or from Mars for return missions).  相似文献   
77.
A method for estimation of sea surface temperature, ocean wind speed and water vapor with microwave radiometer data based on simulated annealing is proposed. The proposed method shows about 60% improvement of sea surface temperature estimation accuracy in comparison to the existing method using Newton’s iterative algorithm.  相似文献   
78.
Cometary ices are believed to contain water, carbon monoxide, methane and ammonia, and are possible sites for the formation and preservation of organic compounds relating to the origin of life. Cosmic rays, together with ultraviolet light, are among the most effective energy sources for the formation of organic compounds in space. In order to study the possibility of the formation of amino acids in comets or their precursory bodies (interstellar dust grains), several types of ice mixtures made in a cryostat at 10 K ("simulated cometary ices") were irradiated with high energy protons. After irradiation, the volatile products were analyzed with a quadrupole mass spectrometer, while temperature of the cryostat was raised to room temperature. The non-volatile products remaining in the cryostat at room temperature were collected with water. They were acid-hydrolyzed, and analyzed by ion-exchange chromatography. When an ice mixture of carbon monoxide (or methane), ammonia and water was irradiated, some hydrocarbons were formed, and amino acids such as glycine and alanine were detected in the hydrolyzate. These results suggest the possible formation of "amino acid precursors" (compounds yielding amino acids after hydrolysis) in interstellar dust grains by cosmic radiation. We previously reported that amino acid precursors were formed when simulated primitive planetary atmospheres were irradiated with cosmic ray particles. It will be of great interest to compare the amount of bioorganic compounds that were formed in the primitive earth and that brought by comets to the earth.  相似文献   
79.
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage.  相似文献   
80.
An analysis of the experimental data available and of the present theoretical concepts shows that even the initial physicochemical chemical precellular stages of biological evolution are impossible in the interstellar medium, while biomonomers possibly formed on asteroids and comets might have participated after transportation to the Earth in the final stages of the origin of the first precellular biological structures and then in the first living cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号