首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5692篇
  免费   29篇
  国内免费   14篇
航空   2750篇
航天技术   2117篇
综合类   26篇
航天   842篇
  2021年   48篇
  2019年   49篇
  2018年   101篇
  2017年   64篇
  2016年   69篇
  2015年   32篇
  2014年   113篇
  2013年   141篇
  2012年   135篇
  2011年   187篇
  2010年   140篇
  2009年   227篇
  2008年   317篇
  2007年   155篇
  2006年   128篇
  2005年   143篇
  2004年   137篇
  2003年   189篇
  2002年   119篇
  2001年   192篇
  2000年   113篇
  1999年   131篇
  1998年   164篇
  1997年   105篇
  1996年   146篇
  1995年   195篇
  1994年   168篇
  1993年   103篇
  1992年   144篇
  1991年   67篇
  1990年   67篇
  1989年   142篇
  1988年   62篇
  1987年   63篇
  1986年   58篇
  1985年   179篇
  1984年   150篇
  1983年   139篇
  1982年   144篇
  1981年   166篇
  1980年   53篇
  1979年   62篇
  1978年   50篇
  1977年   41篇
  1976年   28篇
  1975年   45篇
  1974年   37篇
  1973年   31篇
  1972年   46篇
  1970年   27篇
排序方式: 共有5735条查询结果,搜索用时 31 毫秒
151.
The effective weighting function for weather radar is defined. This weighting function considers the effects of both the transmitted signal and the receiver filter. It is used to assign effective ranges to samples taken at prescribed times. For uniformly distributed targets it is shown that "signal"-to-noise ratio depends on the receiver filter, transmitted signal envelope, and receiver noise spectral density. Maximization of this signal-to-noise ratio when range resolution constraints are imposed is discussed, and a receiver design approach specifically adapted for Doppler weather radars is developed.  相似文献   
152.
The recently developed Radon-ambiguity transform (RAT) detects unknown linear frequency modulated (LFM) signals by computing line integrals through the origin of the signal's ambiguity function (AF) magnitude. It is shown that this method also detects the step LFM and frequency-derived polyphase pulse compression waveforms with varying performance degradation. Simulations are provided to estimate the detection loss relative to the LFM.  相似文献   
153.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
154.
Differential-game-based guidance law using target orientation observations   总被引:4,自引:0,他引:4  
Modern 4th generation air-to-air missiles are quite capable of dealing with today's battlefield needs. Advanced aerodynamics, highly efficient warheads and smart target acquisition systems combine to yield higher missile lethality than ever. However, in order to intercept highly maneuverable targets, such as future unmanned combat air vehicles (UCAV), or to achieve higher tracking precision for missiles equipped with smaller warheads, further improvement in the missile guidance system is still needed. A new concept is presented here for deriving improved differential-game-based guidance laws that make use of information about the target orientation, which is acquired via an imaging seeker. The underlying idea is that of using measurements of the target attitude as a leading indicator of target acceleration. Knowledge of target attitude reduces the reachable set of target acceleration, facilitating the computation of an improved estimate of the zero-effort miss (ZEM) distance. In consequence, missile guidance accuracy is significantly improved. The new concept is applied in a horizontal interception scenario, where it is assumed that the target maneuver direction, constituting a partial attitude information, can be extracted via processing target images, acquired by an imaging sensor. The derivation results in a new guidance law that explicitly exploits the direction of the target acceleration. The performance of the new guidance law is studied via a computer simulation, which demonstrates its superiority over existing state-of-the-art differential-game-based guidance laws. It is demonstrated that a significant decrease in the miss distance can be expected via the use of partial target orientation information.  相似文献   
155.
Hawkins  S.E.  Roelof  E.C.  Decker  R.B.  Ho  G.C.  Lario  D. 《Space Science Reviews》2001,97(1-4):269-272
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times (∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and two events with small field-aligned gradients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
156.
In a recent paper, general expressions were derived for the density and cumulative probability functions of the amplitude of a linear matched-filter output given a nonfluctuating target in a clutter-limited environment. These expressions were based on the clutter amplitude density function. The results are extended to calculate the cumulative probability function of the output of a linear matched filter used to detect a chi-square fluctuating target in a clutter-limited environment. The resulting method is applied to a common radar clutter model, and experimental sonar data.  相似文献   
157.
We present the results from a study of the variations of the cosmic-ray intensity with time, heliographic latitude, and longitude, and for varying interplanetary conditions, using our three-dimensional, time-dependent computer code for cosmic-ray transport in the heliosphere. Our code also produces a solar-wind and interplanetary magnetic field (IMF) configuration which is compared with observations. Because of the fully threedimensional nature of the model calculations, we are able to model time variations which would be expected to be observed along Ulysses's trajectory as it moves to high latitudes. In particular we can model the approximately 13-and 26-day solar-rotation induced variations in cosmic rays, solar wind and IMF, as a function of increasing heliographic latitude, as one moves poleward of the interplanetary current sheet. Our preliminary model results seem to be in general form quite similar to published data, but depend on the physical parameters used such as cosmic-ray diffusion coefficients, boundary conditions, and the nature of the solar wind and IMF and current sheet.  相似文献   
158.
Haines  K.  Hipkin  R.  Beggan  C.  Bingley  R.  Hernandez  F.  Holt  J.  Baker  T.  Bingham  R.J. 《Space Science Reviews》2003,108(1-2):205-216
Accurate local geoids derived from in situ gravity data will be valuable in the validation of GOCE results. In addition it will be a challenge to use GOCE data in an optimal way, in combination with in situ gravity, to produce better local geoid solutions. This paper discusses the derivation of a new geoid over the NW European shelf, and its comparison with both tide gauge and altimetric sea level data, and with data from ocean models. It is hoped that over the next few years local geoid methods such as these can be extended to cover larger areas and to incorporate both in situ and satellite measured gravity data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
159.
Present-Day Sea Level Change: Observations and Causes   总被引:3,自引:0,他引:3  
Cazenave  A.  Cabanes  C.  Dominh  K.  Gennero  M.C.  Le Provost  C. 《Space Science Reviews》2003,108(1-2):131-144
We investigate climate-related processes causing variations of the global mean sea level on interannual to decadal time scale. We focus on thermal expansion of the oceans and continental water mass balance. We show that during the 1990s where global mean sea level change has been measured by Topex/Poseidon satellite altimetry, thermal expansion is the dominant contribution to the observed 2.5 mm/yr sea level rise. For the past decades, exchange of water between continental reservoirs and oceans had a small, but not totally negligible contribution (about 0.2 mm/yr) to sea level rise. For the last four decades, thermal contribution is estimated to about 0.5 mm/yr, with a possible accelerated rate of thermosteric rise during the 1990s. Topex/Poseidon shows an increase in mean sea level of 2.5 mm/yr over the last decade, a value about two times larger than reported by historical tide gauges. This would suggest that there has been significant acceleration of sea level rise in the recent past, possibly related to ocean warming. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
160.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号