首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   0篇
  国内免费   1篇
航空   105篇
航天技术   32篇
航天   15篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   10篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   10篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   10篇
  1990年   7篇
  1989年   3篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1966年   1篇
  1963年   2篇
排序方式: 共有152条查询结果,搜索用时 234 毫秒
111.
Reports of unpredicted lightning and its spatial association with mountains of possible volcanic origin are provocative features of the 1980's literature on Venus. These reports are based upon interpretation of low-frequency 100 Hz electric field noise observed from the Pioneer Venus Orbiter during 1978–1986. These speculations have been repeatedly challenged in the literature. Even though explosive volcanism, like lightning, is discounted in the literature, researchers have been prompted to believe in present-day eruptions by the suggestion that volcanic plumes might stimulate the otherwise unexpected lightning. Recent introductions of a distinct set of higher-frequency electric field noise has resulted in further claims for lightning, but these results, like those derived from the 100 Hz data are discounted be several independent studies. Commenting on the large body of 100 Hz data, Russell (1991) abandons earlier reports of the planetographic clustering of this noise, and states that active volcanoes are not the source of the Venus lightning. This welcome acknowledgement leaves unresolved problems. First, this brief comment is quite insufficient to correct the widespread and flawed perception that Venus is currently experiencing widespread lightning, stimulated by volcanic disturbances. Second, this admission leaves unexplained the origin of the voluminous 100 Hz data set. The foregoing problems, combined with negative results of recent independent studies, indicate strongly that the Pioneer Venus results provide no reliable evidence of either lightning or volcanism at Venus.  相似文献   
112.
The continued analyses of penetrating impacts on MAP foils of Aluminium and Brass have produced data for several LDEF faces, i.e., Space, West, and East. These data have immediate bearing on the interpretation and design of devices to detect the penetration of a thin metallic film by a dust grain which have been tested both in the laboratory and in space. A crucial component of the analysis has been the theoretical calculation utilizing CTH, a Sandia National Laboratory Hydrodynamic computer code /1/ to assess the parameters of the hypervelocity penetration event. In particular theoretical hydrodynamic calculations have been conducted to simulate the hypervelocity impact event where various cosmic dust grain candidates, e.g., density = 0.998, 2.700, 7.870 (gm/cm3), and velocities, i.e., 7 - 16 km/s, have been utilized to reproduce the events. Theoretical analyses of hypervelocity impact events will be reported which span an extensive matrix of values for velocity, density and size. Through a comparison between LDEF MAP foil measurements and CTH hydrocode calculations these analyses will provide an interpretation of the most critical parameters measured for space returned materials, i.e., for thin films, the diameter of the penetration hole, Dh, and for semi-infinite targets, the depth-to-diameter ratio of craters, . An immediate consequence of a comparison of CTH calculations with space exposed materials will be an enhancement of the coherent model developed by UKC-USS researchers to describe penetration dynamics associated with LDEF MAP foils.  相似文献   
113.
114.
115.
We have used several transport codes to calculate dose and dose equivalent values as well as the particle spectra behind a slab or inside a spherical shell shielding in typical space radiation environments. Two deterministic codes, HZETRN and UPROP, and two Monte Carlo codes, FLUKA and Geant4, are included. A soft solar particle event, a hard solar particle event, and a solar minimum galactic cosmic rays environment are considered; and the shielding material is either aluminum or polyethylene. We find that the dose values and particle spectra from HZETRN are in general rather consistent with Geant4 except for neutrons. The dose equivalent values from HZETRN and Geant4 are not far from each other, but the HZETRN values behind shielding are often lower than the Geant4 values. Results from FLUKA and Geant4 are mostly consistent for considered cases. However, results from the legacy code UPROP are often quite different from the other transport codes, partly due to its non-consideration of neutrons. Comparisons for the spherical shell geometry exhibit the same qualitative features as for the slab geometry. In addition, results from both deterministic and Monte Carlo transport codes show that the dose equivalent inside the spherical shell decreases from the center to the inner surface and this decrease is large for solar particle events; consistent with an earlier study based on deterministic radiation transport results. This study demonstrates both the consistency and inconsistency among these transport models in their typical space radiation predictions; further studies will be required to pinpoint the exact physics modules in these models that cause the differences and thus may be improved.  相似文献   
116.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   
117.
The early ISEE orbits provided the opportunity to study the magnetopause and its environs only a few Earth radii above the subsolar point. Measurements of complete two-dimensional ion and electron distributions every 3 or 12 s, and of three-dimensional distributions every 12 or 48 s by the LASL/MPI instrumentation on both spacecraft allow a detailed study of the plasma properties with unprecedented temporal resolution. This paper presents observations obtained during four successive inbound orbits in November 1977, containing a total of 9 magnetopause crossings, which occurred under widely differing orientations of the external magnetic field. The main findings are: (1) The magnetosheath flow near the magnetopause is characterized by large fluctuations, which often appear to be temporal in nature. (2) Between 0.1 and 0.3R E outside the magnetopause, the plasma density and pressure often start to gradually decrease as the magnetopause is approached, in conjunction with an increase in magnetic field strength. These observations are in accordance with the formation of a depletion layer due to the compression of magnetic flux tubes. (3) In cases where the magnetopause can be well resolved, it exhibits fluctuations in density, and especially pressure and bulk velocity around average magnetosheath values. The pressure fluctuations are anticorrelated with simultaneous magnetic field pressure changes. (4) In ope case the magnetopause is characterized by substantially displaced electron and proton boundaries and a proton flow direction change from upwards along the magnetopause to a direction tranverse to the geomagnetic field. These features are in agreement with a model of the magnetopause described by Parker. (5) The character of the magnetopause sometimes varies strongly between ISEE-1 and -2 crossings which occur 1 min apart. At times this is clearly the result of highly non-uniform motions. There are also cases where there is very good agreement between the structures observed by the two satellites. (6) In three of the nine crossings no boundary layer was present adjacent to the magnetopause. More remarkably, two of the three occurred while the external magnetic field had a substantial southward component, in clear contradiction to expectations from current reconnection models. (7) The only thick (low-latitude) boundary layer (LLBL) observed was characterized by sharp changes at its inner and outer edges. This profile is difficult to reconcile with local plasma entry by either direct influx or diffusion. (8) During the crossings which showed no boundary layer adjacent to the magnetopause, magnetosheath-like plasma was encountered sometime later. Possible explanations include the sudden formation of a boundary layer at this location right at the time of the encounter, and a crossing of an inclusion of magnetosheath plasma within the magnetosphere. (9) The flow in the LLBL is highly variable, observed directions include flow towards and away from the subsolar point, along the geomagnetic field and across it, tangential and normal to the magnetopause. Some of these features clearly are nonstationary. The scale size over which the flow directions change exceeds the separation distance (several hundred km) of the two spacecraft.  相似文献   
118.
The Plasma Experiment for Planetary Exploration (PEPE) flown on Deep Space 1 combines an ion mass spectrometer and an electron spectrometer in a single, low-resource instrument. Among its novel features PEPE incorporates an electrostatically swept field-of-view and a linear electric field time-of-flight mass spectrometer. A significant amount of effort went into developing six novel technologies that helped reduce instrument mass to 5.5 kg and average power to 9.6 W. PEPE’s performance was demonstrated successfully by extensive measurements made in the solar wind and during the DS1 encounter with Comet 19P/Borrelly in September 2001. P. Barker is deceased.  相似文献   
119.
120.
Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucrite-diogenite (HED) suite, which have been both spectroscopically and dynamically linked to Vesta, lead to a model of the asteroid with a basaltic crust that overlies a depleted peridotitic mantle and an iron core. Vesta??s crust may become more mafic with depth and might have been intruded by plutons arising from mantle melting. Constraints on the asteroid??s moments of inertia from the long-wavelength gravity field, pole position and rotation, informed by bulk composition estimates, allow tradeoffs between mantle density and core size; cores of up to half the planetary radius can be consistent with plausible mantle compositions. The asteroid??s present surface is expected to consist of widespread volcanic terrain, modified extensively by impacts that exposed the underlying crust or possibly the mantle. Hemispheric heterogeneity has been observed by poorly resolved imaging of the surface that suggests the possibility of a physiographic dichotomy as occurs on other terrestrial planets. Vesta might have had an early magma ocean but details of the early thermal structure are far from clear owing to model uncertainties and paradoxical observations from the HEDs. Petrological analysis of the eucrites coupled with thermal evolution modeling recognizes two possible mechanisms of silicate-metal differentiation leading to the formation of the basaltic achondrites: equilibrium partial melting or crystallization of residual liquid from the cooling magma ocean. A firmer understanding the plethora of complex physical and chemical processes that contribute to melting and crystallization will ultimately be required to distinguish among these possibilities. The most prominent physiographic feature on Vesta is the massive south polar basin, whose formation likely re-oriented the body axis of the asteroid??s rotation. The large impact represents the likely major mechanism of ejection of fragments that became the HEDs. Observations from the Dawn mission hold the promise of revolutionizing our understanding of 4 Vesta, and by extension, the nature of collisional, melting and differentiation processes in the nascent solar system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号