首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   0篇
  国内免费   1篇
航空   32篇
航天技术   25篇
航天   41篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   10篇
  2010年   8篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
排序方式: 共有98条查询结果,搜索用时 500 毫秒
91.
Several methods of using an earth-based radio reference signal to determine the three-axis attitude of a synchronous satellite, and two types of spacecraft electronic systems (amplitude measurement and phase measurement), which obtain attitude and pointing information from the radio reference signal for orientating the spacecraft and for directing large-aperture antennas aboard the spacecraft are described. The earth-based radio reference signal also enables the electronic systems to determine angles to other ground stations with respect to fixed (reference) stations on the earth. These attitude- and angle-determining techniques are applicable to communications satellites, navigational satellites, and intersatellite data relay systems.  相似文献   
92.
Given the diversity of missions it has accomplished and the myriad of adaptations it has undergone, the US Space Shuttle is widely regarded as a highly flexible space vehicle. With the Shuttle’s upcoming 2011 retirement, it is instructive to survey the history of this vehicle’s flexibility for the insights it can provide to the design and characterization of flexibility in future space systems. Data are presented on the evolution of mission requirements over time for 120 missions performed by the Space Shuttle over a period of some 27 years. Distinct trends in the time domain – as well as their causes – are identified and discussed, and early manifest plans from 1982 serve as a confirmation that these trends were not originally anticipated. Eight examples are then presented of engineering modifications that allowed the Shuttle to adapt and accommodate these requirement changes. Several additional instances of Shuttle flexibility are explored, such as post-Columbia disaster modification, upgrade programs and derived vehicles, and one case in which flexibility was inhibited by an early design decision.  相似文献   
93.
A new magnetic core circuit that is used to supply power in the proper phase and time sequence to a bidirectional stepping motor is described. This circuit will power a standard voltage stepping motor from a nonstandard voltage power supply and includes a means for maintaining a constant energy pulse excitation over a wide range of dc power supply input voltage, a means for supplying power to the winding of the motor on pairs of isolated conductors, and a means for conductively isolating the low-level logic circuits from the high-level power circuits.  相似文献   
94.
Joseph P. Loftus  Jr. 《Acta Astronautica》1999,44(7-12):645-648
The population in the geostationary orbit is increasing at the rate of about 25 spacecraft a year and operating lifetimes are increasing. The size of the spacecraft is increasing, as is the power level. The only way to protect the operational arc is to reboost spacecraft at end of life to a burial orbit. While most operators do some reboost maneuver at end of mission there has been no agreed upon criterion for the maneuver. The ITU-R S. 10031 recommends reboost of not less than 300 km with the apogee as high as possible. The Interagency Debris Coordination Working Group (IADC) has recently achieved a consensus on a recommendation that the minimum maneuver be 235 km + Cr 1000 A/M. The concept is that this accommodates the ± 3 7.5 km variance in normal radial positioning and a 167.5 km corridor above the arc for repositioning or supersynchronous delivery and establishes a criterion by which the dispositioned spacecraft will never enter that zone after its completion of the maneuver. It also deals with the fact the area mass ratio of spacecraft has been evolving to higher values. Earlier spacecraft had characteristic values of 0.03 but the average now is closer to 0.05 and there are some as great as 0.10.

Disposition of the upper stage should be the same as the spacecraft if it is delivered to GSO. It is preferable to have the stage deliver the spacecraft supersynchronous and then have the spacecraft maneuver down to the GSO.  相似文献   

95.
A study was carried out on the effects of processing and composition on the structure and properties of P/M EP741NP type alloys. The objectives of this study were to understand the role of Hf in a P/M superalloy containing high niobium used in aircraft engines and to determine the effects of extrusion and forging the powders as contrasted to HIPing (hot isostatic pressing) only. Two alloys of the P/M EP741NP composition were atomized: one alloy contained 0.26%Hf and the other was Hf free. After the as-atomized powders from both alloys were characterized, the powders were extruded into billets, forged and heat treated. After each process, the microstructures were characterized by SEM and the phases were extracted and identified by X-ray diffraction. The presence of Hf in the residues was probed by EDS (energy dispersive spectroscopy). The alloys were given the published Russian heat treatment as well as a more conventional heat treatment more typical of western powder alloys. Tensile, creep and stress rupture mechanical property tests were run. Results of the structural behavior of the alloys after each processing step will be presented and discussed. The role of the Hf on the mechanical proper- ties will be discussed.  相似文献   
96.
The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument testing and handling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
97.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
98.
Crater detection via genetic search methods to reduce image features   总被引:1,自引:0,他引:1  
Recent approaches to crater detection have been inspired by face detection’s use of gray-scale texture features. Using gray-scale texture features for supervised machine learning crater detection algorithms provides better classification of craters in planetary images than previous methods. When using Haar features it is typical to generate thousands of numerical values from each candidate crater image. This magnitude of image features to extract and consider can spell disaster when the application is an entire planetary surface. One solution is to reduce the number of features extracted and considered in order to increase accuracy as well as speed. Feature subset selection provides the operational classifiers with a concise and denoised set of features by reducing irrelevant and redundant features. Feature subset selection is known to be NP-hard. To provide an efficient suboptimal solution, four genetic algorithms are proposed to use greedy selection, weighted random selection, and simulated annealing to distinguish discriminate features from indiscriminate features. Inspired by analysis regarding the relationship between subset size and accuracy, a squeezing algorithm is presented to shrink the genetic algorithm’s chromosome cardinality during the genetic iterations. A significant increase in the classification performance of a Bayesian classifier in crater detection using image texture features is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号