首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6518篇
  免费   7篇
  国内免费   18篇
航空   3486篇
航天技术   1925篇
综合类   23篇
航天   1109篇
  2018年   200篇
  2017年   157篇
  2016年   64篇
  2015年   39篇
  2014年   83篇
  2013年   134篇
  2012年   149篇
  2011年   293篇
  2010年   240篇
  2009年   308篇
  2008年   339篇
  2007年   274篇
  2006年   143篇
  2005年   197篇
  2004年   130篇
  2003年   172篇
  2002年   103篇
  2001年   181篇
  2000年   110篇
  1999年   140篇
  1998年   164篇
  1997年   123篇
  1996年   171篇
  1995年   215篇
  1994年   183篇
  1993年   124篇
  1992年   128篇
  1991年   76篇
  1990年   62篇
  1989年   139篇
  1988年   62篇
  1987年   66篇
  1986年   60篇
  1985年   196篇
  1984年   152篇
  1983年   129篇
  1982年   134篇
  1981年   176篇
  1980年   58篇
  1979年   42篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   58篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   37篇
排序方式: 共有6543条查询结果,搜索用时 31 毫秒
151.
152.
An optical design study for a next generation infrared space telescope has been performed. The concept is that of a passively cooled telescope of minium aperture 2.5 metre with an F/1.2 primary and wavelength coverage from = 2 to at least 40 m, and possibly to 100 m. Compactness, low thermal emission from the optics and structure, diffraction limited imaging at = 2 m, and sensitivity to misalignment aberrations and manufacturing errors were the main considerations for this study. Ray tracing results are presented showing the characteristics of the various designs considered. A preliminary investigation of stray light properties is also given. Special emphasis has been placed on the testing of such a fast primary, and optical systems using a lateral shearing interferometer are described for testing both the primary and the primary/secondary combination.  相似文献   
153.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   
154.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
155.
I summarize the results of recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is primarily electrons and positrons with an admixture of heavy ions. Shocks which contain heavy ions that are a minority constituent by number but which carry most of the energy density in the upstream medium put 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) E -2, where N(E)dE is the number of particles with energy between E and E+dE. Synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front, provides the mechanism of thermalization and non-thermal particle acceleration. The maximum energy achievable by the pairs is ± m ± c 2 = m i c 2 1/Z i, where 1 is the Lorentz factor of the upstream flow and Z i is the atomic number of the ions. The shock's spatial structure contains a series of overshoots in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. These overshoots provide a new interpretation of the structure of the inner regions of the Crab Nebula, in particular of the wisps, surface brightness enhancements near the pulsar. The wisps appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar's wind in the Crab Nebula is spatially resolved, and allows one to measure 1 4 × 106, the upstream magnetic field B 1 to be 3 × 10-5 Gauss, as well as to show that the total ion flow is 3 × 1034 elementary charges/sec, in good agreement with the total current flow predicted by the early Goldreich and Julian (1969) model. The total pair outflow is shown to be about 5 × 1037 pairs per second, in good agreement with the particle flux required to explain the nebular X—ray source.The energetics of particle acceleration within the magnetospheres of rotation powered pulsars and the consequences for pulsed gamma ray emission are also briefly discussed. The gamma ray luminosity above 100 MeV is shown to scale in proportion to R 1/2 , as is in accord with some of the simplest ideas about polar cap models. Models based on acceleration in the outer magnetosphere are also briefly discussed.  相似文献   
156.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   
157.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
158.
The heating of solar coronal loops by the resonant absorption or phase-mixing of incident wave energy is investigated in the framework of 3D nonlinear magnetohydrodynamics (MHD) by means of numerical simulations.  相似文献   
159.
The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is based on finding low-dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena:
  1. Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation.
  2. Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.
  相似文献   
160.
Protons of a specific energy, 55 MeV, have been found to induce primary high grade astrocytomas (HGA) in the Rhesus monkey (Macaca mulatta). Brain tumors of this type were not induced by protons of other energies (32-2,300 MeV). Induction of HGA has been identified in human patients who have had radiation therapy to the head. We believe that the induction of HGA in the monkey is a consequence of dose distribution, not some unique "toxic" property of protons. Comparison of the human experience with the monkey data indicates the RBE for induction of brain tumors to be about one. It is unlikely that protons cause an unusual change in oncogenic expression, as compared to conventional electromagnetic radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号