排序方式: 共有166条查询结果,搜索用时 15 毫秒
131.
Paul Morgan Matthias Grott Brigitte Knapmeyer-Endrun Matt Golombek Pierre Delage Philippe Lognonné Sylvain Piqueux Ingrid Daubar Naomi Murdoch Constantinos Charalambous William T. Pike Nils Müller Axel Hagermann Matt Siegler Roy Lichtenheldt Nick Teanby Sharon Kedar 《Space Science Reviews》2018,214(6):104
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission. 相似文献
132.
Lucile Fayon Brigitte Knapmeyer-Endrun Philippe Lognonné Marco Bierwirth Aron Kramer Pierre Delage Foivos Karakostas Sharon Kedar Naomi Murdoch Raphael F. Garcia Nicolas Verdier Sylvain Tillier William T. Pike Ken Hurst Cédric Schmelzbach William B. Banerdt 《Space Science Reviews》2018,214(8):119
Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing. 相似文献
133.
José F. Valdés-Galicia 《Space Science Reviews》1993,62(1-2):67-93
It is the purpose of this review to summarize and discuss recent research done in the field of particle propagation in the heliosphere. Several lines of approach have been followed to treat this problem. As a starting point the different forms of the transport equation are discussed. Quasi-Linear Theory (QLT) relates the power contained in fluctuations of the Interplanetary Magnetic Field (IMF) to the transport coefficients of energetic particles, an outline of the basic results of this theory is presented followed by a discussion of subsequent corrections made to the original formulation with an emphasis in recent developments where the effects of wave polarization, its propagation respect to the solar wind and the dissipation of power at large frequencies have been taken into account. The numerical approach using test particle trajectory integrations to obtain transport coefficients based on in situ satellite measureents is also discussed. It is well known that the determination of the particles mean free path for solar particle events by alternative methods leads to conflicting results, corrections made to original QLT are attempts to bridge the gap. Determination of the transport parameters from different lines of approach in a comparative basis have been done recently by calculating power spectra of IMF measured at the time solar particles were detected on the same spaceprobe, and performing numerical simulations with equivalent IMF data. Some of the results of such studies point to the solution of the conflicting determinations of the mean free path which has existed for nearly 30 years. An assesment of the present situation in this respect is given. Numerical determinations of transport parameters in the outer heliosphere are also reviewed and its consequences for solar modulation of galactic cosmic rays discussed. Space Science Reviews 62: Printed in Belgium. 相似文献
134.
Alexander S. Kovtyukh 《Space Science Reviews》2018,214(8):124
Spatial, energy and angular distributions of ion fluxes in the Earth’s radiation belts (ERB) near the equatorial plane, at middle geomagnetic latitudes and at low altitudes are systematically reviewed herein. Distributions of all main ion components, from protons to Fe (including hydrogen and helium isotopes), and their variations under the action of solar and geomagnetic activity are considered. For ions with \(Z\geq 2\) and especially for ions with \(Z \geq 9\), these variations are much more than for protons, and these have no direct connection with the intensity of magnetic storms (\(Z\) is the charge of the atomic nucleus with respect to the charge of the proton). The main physical mechanisms for the generation of ion fluxes in the ERB and the losses of these ions are considered. Solar wind, Solar Cosmic Rays (SCR), Galactic Cosmic Rays (GCR), and Anomalous component of Cosmic Rays (ACR) as sources of ions in the ERB are considered. 相似文献
135.
In this paper, we discuss the main ways of improving the aircraft aerodynamics. The results of a physical experiment are presented that is aimed to verify the theoretical results obtained earlier on the possible improvement in a seaplane wing model lift-to-drag ratio, by using a deflectable triangular extension along the wing leading edge near the wingtip. We confirm the slight effectiveness of using the wingtip leading edge triangular extensions on the nature of flow around the wing. 相似文献
136.
David H. Rodgers Patricia M. Beauchamp Laurence A. Soderblom Robert H. Brown Gun-Shing Chen Meemong Lee Bill R. Sandel David A. Thomas Robert T. Benoit Roger V. Yelle 《Space Science Reviews》2007,129(4):309-326
MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80–185 nm), two high-resolution
visible imagers (10–20 μrad/pixel, 400–900 nm), and a short-wavelength infrared imaging spectrometer (1250–2600 nm). The wavelength ranges were chosen
to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave
spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera
Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments
into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance
at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable,
monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85–140 K) performance, and
provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from
80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators
coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10
kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength
range to be extended by at least an octave at the short wavelength end and to ∼50 microns at the long wavelength end. Testing
of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced
background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra
for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first
clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet’s nucleus. 相似文献
137.
Martin M. Sirk Eric J. Korpela Yuzo Ishikawa Jerry Edelstein Edward H. Wishnow Christopher Smith Jeremy McCauley Jason B. McPhate James Curtis Travis Curtis Steven R. Gibson Sharon Jelinsky Jeffrey A. Lynn Mario Marckwordt Nathan Miller Michael Raffanti William Van Shourt Andrew W. Stephan Thomas J. Immel 《Space Science Reviews》2017,212(1-2):631-643
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field (\(17^{\circ}\times 12^{\circ}\)) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a imaging resolution perpendicular to the spectral dispersion direction with a large (\(12^{\circ} \)) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of \(R\sim25\) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements. 相似文献
138.
Paul G. Steffes Thomas R. Hanley Bryan M. Karpowicz Kiruthika Devaraj Sahand Noorizadeh Danny Duong Garrett Chinsomboon Amadeo Bellotti Michael A. Janssen Scott J. Bolton 《Space Science Reviews》2017,213(1-4):187-204
The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted. 相似文献
139.
Brigitte Knapmeyer-Endrun Matthew P. Golombek Matthias Ohrnberger 《Space Science Reviews》2017,211(1-4):339-382
The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight’s heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise. 相似文献
140.