首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2602篇
  免费   5篇
  国内免费   5篇
航空   1345篇
航天技术   890篇
综合类   16篇
航天   361篇
  2018年   29篇
  2017年   24篇
  2014年   32篇
  2013年   61篇
  2012年   35篇
  2011年   86篇
  2010年   60篇
  2009年   86篇
  2008年   137篇
  2007年   54篇
  2006年   49篇
  2005年   52篇
  2004年   73篇
  2003年   85篇
  2002年   46篇
  2001年   60篇
  2000年   63篇
  1999年   33篇
  1998年   83篇
  1997年   58篇
  1996年   69篇
  1995年   72篇
  1994年   89篇
  1993年   53篇
  1992年   70篇
  1991年   33篇
  1990年   34篇
  1989年   73篇
  1988年   29篇
  1987年   33篇
  1986年   58篇
  1985年   103篇
  1984年   56篇
  1983年   62篇
  1982年   58篇
  1981年   72篇
  1980年   37篇
  1979年   29篇
  1978年   27篇
  1977年   25篇
  1975年   25篇
  1974年   26篇
  1973年   26篇
  1972年   21篇
  1971年   32篇
  1970年   18篇
  1969年   25篇
  1968年   23篇
  1967年   26篇
  1966年   22篇
排序方式: 共有2612条查询结果,搜索用时 46 毫秒
961.
Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultra-cold, degenerate (extremely dense) electron–positron (EP) plasma (containing non-relativistic, ultra-cold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. It is shown that due to the property of being equal mass of the plasma species (me=mpme=mp, where meme and mpmp are electron and positron mass, respectively), the degenerate EP plasma system supports the K-dV solitons which are associated with either fast or slow magnetosonic perturbation modes. It is also found that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of degenerate electron and positron pressures. The applications of the results in an EP plasma medium, which occurs in compact astrophysical objects, particularly in white dwarfs, have been briefly discussed.  相似文献   
962.
The alpha-particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) mission was calibrated for routine analysis of: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Br, Rb, Sr, and Y. The following elements were also calibrated, but may be too low to be measured (10s–100s ppm) for their usual abundance on Mars: V, Cu, Ga, As, Se and W. An extensive suite of geological reference materials, supplemented by pure chemical elements and compounds was used. Special attention was paid to include phyllosilicates, sulfates and a broad selection of basalts as these are predicted minerals and rocks at the Gale Crater landing site. The calibration approach is from first principles, using fundamental physics parameters and an assumed homogeneous sample matrix to calculate expected elemental signals for a given instrument setup and sample composition. Resulting concentrations for most elements accord with expected values. Deviations in elements of lower atomic number (Na, Mg, Al) indicate significant influences of mineral phases, especially in basalts, ultramafic rocks and trachytes. The systematics of these deviations help us to derive empirical, iterative corrections for different rock groups, based on a preliminary APXS analysis which assumes a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as the X-ray diffraction data from CheMin, are included in the overall analysis process.  相似文献   
963.
964.
Material density is an important, yet often overlooked, property of orbital debris particles. Many models simply use a typical density to represent all breakup fragments. While adequate for modeling average characteristics in some applications, a single value material density may not be sufficient for reliable impact damage assessments. In an attempt to improve the next-generation NASA Orbital Debris Engineering Model, a study on the material density distribution of the breakup fragments has been conducted and summarized in this paper.  相似文献   
965.
Injections of energetic electrons with a dispersion over energies were observed during the February 23, 2004 (at about 03:20 UT) substorm onboard the Cluster satellites in the vicinity of perigee near the midnight meridian. The delays in the particle observation caused by the energy dependence of the magnetic drift velocities made it possible to determine the position and time of the beginning of the drift, tracing the trajectories of the leading center of particles back in time in the magnetospheric model. The comparisons of the measurements of four satellites allowed us to determine the radial propagation of the injection front with a velocity of 100–150 km/s at a distance of 7–9 R E. The comparison with a few previous measurements shows a substantial slowing down of injections as they approached the Earth, and this confirms the prospects of this method for more detailed study of propagation of plasma injection into the inner magnetosphere.  相似文献   
966.
The electric field and magnetic field are basic quantities in the plasmasphere measured since the 1960s. In this review, we first recall conventional wisdom and remaining problems from ground-based whistler measurements. Then we show scientific results from Cluster and Image, which are specifically made possible by newly introduced features on these spacecraft, as follows. 1. In situ electric field measurements using artificial electron beams are successfully used to identify electric fields originating from various sources. 2. Global electric fields are derived from sequences of plasmaspheric images, revealing how the inner magnetospheric electric field responds to the southward interplanetary magnetic fields and storms/substorms. 3. Understanding of sub-auroral polarization stream (SAPS) or sub-auroral ion drifts (SAID) are advanced through analysis of a combination of magnetospheric and ionospheric measurements from Cluster, Image, and DMSP. 4. Data from multiple spacecraft have been used to estimate magnetic gradients for the first time.  相似文献   
967.
We describe recent progress in physics-based models of the plasmasphere using the fluid and the kinetic approaches. Global modeling of the dynamics and influence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the influence of the plasmasphere on the excitation of electromagnetic ion cyclotron (EMIC) waves and precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere and the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the influence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical models used to describe the electric field and plasma distribution in the plasmasphere are presented. Model predictions are compared to recent Cluster and Image observations, but also to results of earlier models and satellite observations.  相似文献   
968.
Field electron emission from aligned multiwalled carbon nanotubes has been assessed to determine if the performance, defined by power consumption, lifetime and emission current, is suitable for use in spacecraft charge neutralisation for field emission electric propulsion (FEEP). Carbon nanotubes grown by chemical vapour deposition (CVD) were mounted on a dual in line chip with a macroscopic (nickel mesh) extractor electrode mounted ~1 mm above the tubes. The nanotubes’ field emission characteristics (emission currents, electron losses and operating voltage) were measured at ~10?4 Pa. An endurance test of one sample, running at a software-controlled constant emission current lasted >1400 h, approaching the longest known FEEP thruster lifetime. The emission corresponds to a current density of ~10 mA/cm2 at a voltage of 150 V. These results, implementing mature extractor-electrode geometry, indicate that carbon nanotubes have considerable potential for development as robust, low-power, long-lived electron emitters for use in space.  相似文献   
969.
The diurnal variation of the mid-latitude upper thermosphere zonal winds during equinoxes has been studied using data recently generated from CHAMP measurements from 2002 to 2004 using an iterative algorithm. The wind data was separated into two geomagnetic activity levels, representing high geomagnetic activity level (Ap > 8) and low geomagnetic activity level (Ap ? 8). The data were further separated into two solar flux levels; with F10.7 > 140 for high and F10.7 ? 140 for low. Geomagnetic activity is a correlator just as significant as solar activity. The response of mid-latitude thermospheric zonal winds to increases in geomagnetic disturbances and solar flux is evident. With increase in geomagnetic activity, midday to midnight winds are generally less eastward and generally more westward after the about midnight transitions. The results show that east west transitions generally occurred about midnight hours for all the situations analyzed. The west to east transition occurs from 1400–1500 MLT. Enhanced westward averaged zonal wind speeds going above 150 ms−1 are observed in the north hemisphere mid-latitude about sunrise hours (∼0700–1100 MLT). Nighttime winds in the north hemisphere are in good agreement with previous single station ground observations over Millstone Hill. Improved ground observations and multi satellite observations from space will greatly improve temporal coverage of the Earth’s thermosphere.  相似文献   
970.
The precise modeling and knowledge of non-gravitational forces acting on satellites is of big interest to many scientific tasks and missions. Since 2002, the twin GRACE satellites have measured these forces in a low Earth orbit with highly precise accelerometers, for about 15?years. Besides the significance for the GRACE mission, these measurement data allow the evaluation of modeling approaches and the improvement of force models. Unfortunately, before any scientific usage, the accelerometer measurements need to be calibrated, namely scale factor and bias have to be regularly estimated.In this study we demonstrate an accelerometer calibration approach, solely based on high precision non-gravitational force modeling without any use of empirically or stochastically estimated parameters, using our in-house developed satellite simulation tool XHPS. The aim of this work is twofold, first we use the accelerometer data and the residuals resulting from the calibration to quantitatively analyze and validate different non-gravitational force model approaches. In a second step, we compare the calibration results to three different calibration methods from different authors, based on gravity field recovery, GPS-based precise orbit determination, and based on modeled accelerations.We consider atmospheric drag forces and winds, as well as radiation forces due to solar radiation pressure, albedo, Earth infrared and thermal radiation (TRP) of the satellite itself. For TRP, we investigate different transient temperature calculation approaches for the satellite surfaces with absorbed power from the aforementioned radiation sources. A detailed finite element model of the satellite is utilized for every force, considering orientation, material properties and shadowing conditions for each element.For cross-track and radial direction, which are mainly affected by the radiative forces, our calibration residuals are quite small when drag is not super dominant (1–3?nm/s2 for total accelerations around ±50?nm/s2). For these directions the calibration seems to perform better than the other compared methods, where some bigger differences were found. For the drag dominated along-track direction it is vice versa, here our method is not sensitive enough because the difference between modeled and measured drag is bigger (e.g. residuals around 10?nm/s2 for total accelerations around ±70?nm/s2 for low solar activity). In along-track direction the orbit determination based methods are more sensitive and produce more reliable results. Results for the complete GRACE mission time span from 2003 to 2017 are shown, covering different seasonal environmental conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号