首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2602篇
  免费   5篇
  国内免费   5篇
航空   1345篇
航天技术   890篇
综合类   16篇
航天   361篇
  2018年   29篇
  2017年   24篇
  2014年   32篇
  2013年   61篇
  2012年   35篇
  2011年   86篇
  2010年   60篇
  2009年   86篇
  2008年   137篇
  2007年   54篇
  2006年   49篇
  2005年   52篇
  2004年   73篇
  2003年   85篇
  2002年   46篇
  2001年   60篇
  2000年   63篇
  1999年   33篇
  1998年   83篇
  1997年   58篇
  1996年   69篇
  1995年   72篇
  1994年   89篇
  1993年   53篇
  1992年   70篇
  1991年   33篇
  1990年   34篇
  1989年   73篇
  1988年   29篇
  1987年   33篇
  1986年   58篇
  1985年   103篇
  1984年   56篇
  1983年   62篇
  1982年   58篇
  1981年   72篇
  1980年   37篇
  1979年   29篇
  1978年   27篇
  1977年   25篇
  1975年   25篇
  1974年   26篇
  1973年   26篇
  1972年   21篇
  1971年   32篇
  1970年   18篇
  1969年   25篇
  1968年   23篇
  1967年   26篇
  1966年   22篇
排序方式: 共有2612条查询结果,搜索用时 562 毫秒
181.
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
182.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
183.
The Near-Infrared Spectrometer (NIS) instrument on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft is designed to map spectral properties of the mission target, the S-type asteroid 433 Eros, at near-infrared wavelengths diagnostic of the composition of minerals forming S asteroids. NIS is a grating spectrometer, in which light is directed by a dichroic beam-splitter onto a 32-element Ge detector (center wavelengths, 816–1486 nm) and a 32-element InGaAs detector (center wavelengths, 1371–2708 nm). Each detector reports a 32-channel spectrum at 12-bit quantization. The field-of-view is selectable using slits with dimensions calibrated at 0.37° × 0.76° (narrow slit) and 0.74° × 0.76° (wide slit). A shutter can be closed for dark current measurements. For the Ge detector, there is an option to command a 10x boost in gain. A scan mirror rotates the field-of-view over a 140° range, and a diffuse gold radiance calibration target is viewable at the sunward edge of the field of regard. Spectra are measured once per second, and up to 16 can be summed onboard. Hyperspectral image cubes are built up by a combination of down-track spacecraft motion and cross-track scanning of the mirror. Instrument software allows execution of data acquisition macros, which include selection of the slit width, number of spectra to sum, gain, mirror scanning, and an option to interleave dark spectra with the shutter closed among asteroid observations. The instrument was extensively characterized by on-ground calibration, and a comprehensive program of in-flight calibration was begun shortly after launch. NIS observations of Eros will largely be coordinated with multicolor imaging from the Multispectral Imager (MSI). NIS will begin observing Eros during approach to the asteroid, and the instrument will map Eros at successively higher spatial resolutions as NEAR's orbit around Eros is lowered incrementally to 25 km altitude. Ultimate products of the investigation will include composition maps of the entire illuminated surface of Eros at spatial resolutions as high as 300 m.  相似文献   
184.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
185.
This response to Alex Roland's article, ‘Priorities in space for the USA’, argues that his analysis and conclusions are based on shaky historical evidence. Professor Roland's interpretation of NASA's priorities since 1959 is challenged, and it is pointed out that the manned spaceflight programme has widespread support in the USA. The most important issue, raised by the article but not treated extensively enough, is whether the pursuit of the widely accepted emphasis on manned spaceflight is a large-scale societal mistake.  相似文献   
186.
Soviet General Secretary Gorbachev has proposed a joint US-Soviet programme to explore the planet Mars. The authors argue that there is considerable advantage to be gained from such a programme for both countries and for all nations on Earth. They trace the history of the US and Soviet space programmes and of cooperation between the two nations, focusing particularly on activities relating to Mars. Robotic Mars exploration is already technically possible and could take place in the 1990s, and a first step towards manned exploration could be the writing of a development and flight plan aiming for the first decade of the 21st century.  相似文献   
187.
188.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
189.
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.  相似文献   
190.
The Juno Waves Investigation   总被引:1,自引:0,他引:1  
Jupiter is the source of the strongest planetary radio emissions in the solar system. Variations in these emissions are symptomatic of the dynamics of Jupiter’s magnetosphere and some have been directly associated with Jupiter’s auroras. The strongest radio emissions are associated with Io’s interaction with Jupiter’s magnetic field. In addition, plasma waves are thought to play important roles in the acceleration of energetic particles in the magnetosphere, some of which impact Jupiter’s upper atmosphere generating the auroras. Since the exploration of Jupiter’s polar magnetosphere is a major objective of the Juno mission, it is appropriate that a radio and plasma wave investigation is included in Juno’s payload. This paper describes the Waves instrument and the science it is to pursue as part of the Juno mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号