首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2846篇
  免费   3篇
  国内免费   8篇
航空   1357篇
航天技术   1067篇
综合类   8篇
航天   425篇
  2021年   16篇
  2019年   18篇
  2018年   43篇
  2017年   39篇
  2016年   27篇
  2015年   13篇
  2014年   57篇
  2013年   75篇
  2012年   54篇
  2011年   123篇
  2010年   76篇
  2009年   135篇
  2008年   166篇
  2007年   78篇
  2006年   62篇
  2005年   72篇
  2004年   78篇
  2003年   106篇
  2002年   55篇
  2001年   106篇
  2000年   60篇
  1999年   95篇
  1998年   94篇
  1997年   68篇
  1996年   70篇
  1995年   91篇
  1994年   100篇
  1993年   39篇
  1992年   60篇
  1991年   26篇
  1990年   29篇
  1989年   59篇
  1988年   25篇
  1987年   39篇
  1986年   30篇
  1985年   90篇
  1984年   44篇
  1983年   49篇
  1982年   57篇
  1981年   81篇
  1980年   29篇
  1979年   27篇
  1978年   24篇
  1977年   19篇
  1976年   15篇
  1975年   19篇
  1974年   14篇
  1972年   17篇
  1969年   13篇
  1968年   13篇
排序方式: 共有2857条查询结果,搜索用时 968 毫秒
751.
In dark-grown plantlets of the moss, Pottia intermedia, negatively gravitropic secondary protonemata differentiate from the superficial cells of leafy shoots. When transferred to the light, distal parts of the protonemata nearest to the apical cells begin to ramify and the apical cells of the side branches as well as of the main protonemal filaments often differentiate as buds. Dark-grown protonemata were oriented horizontally and illuminated from below with white light of different intensities. Only light with an intensity of 4.5 μmol·m−2·s−1 was sufficient to induce: (a) phototropism in the apical cells, (b) light-directed initiation of branch primordia, and (c) directed growth of side branches and bud differentiation. Apical cells illuminated with light of lower (0.03–0.37 μmol·m−2·s−1) intensity grew upwards (i.e., away from the light). It was shown that this upward growth was determined by the action of gravity. Although initiation of branch primordia was only slightly affected, their growth was strongly stimulated on the upper side of the protonemata.  相似文献   
752.
Seedlings of cucurbitaceous plants develop a protuberant tissue, or peg, on the lower side of the transition region between root and hypocotyl when germinated in a horizontal position. Peg develops due to a change in growth polarity of the cortical cells. We have examined the role of the cytoskeletal structure in peg formation of cucumber seedlings. We observed that in both peg and normal cortical cells of 36 h-old seedlings the microtubules (MTs) were arranged perpendicular to the longitudinal axis of the elongating cells. Application of colchicine perturbed the MTs structure and inhibited the formation of pegs. In 20 h-old seedlings, MTs in cortical cells destined to be a peg tissue had no preferential organization, whereas MTs in normal cortical cells were transversely oriented. After 24 h, the MTs in future peg cells were arranged similar to those of 36 h-old seedlings, although the initiation of peg tissue was not yet visible. These results suggest that reorganization of MTs is required for peg formation and causes the change in growth polarity of the cortical cells.  相似文献   
753.
We have produced thin films of quenched carbonaceous composite (QCC) by hydrocarbon plasma deposition. The effect of thermal annealing on QCC has been investigated to understand how QCC, as a laboratory analog of carbon dust, is transformed in the warm environment around evolved stars. Spectroscopic measurements have indicated that, by heating, the proportion of aromatic sp2 CH bonds increases relative to sp3 CH bonds. Carbon onion-like spherules of approximately 10 nm in diameter are found with electron microscopic images after "graphitization" of thermal annealing.  相似文献   
754.
"Quenched Carbonaceous Composites (QCCs)" are carbonaceous interstellar dust analogues synthesized in the laboratory from a hydrocarbon plasma. We produced new types of carbonaceous condensates from the ejecta of plasma with mixtures of methane and hydrogen as source gases. We find that QCC with an absorbance peak at 220 nm is composed of onion-like spherules, and QCCs with an absorbance peak at 230-240 nm are composed of polyhedral particles. The onion-like QCC contains aromatic hydrogen bonds, and it shows the 3.3 and 11.4 micrometers absorption bands. The QCC with an absorbance peak at 230-240 nm is composed of ribbons with bent graphitic layers. This suggests that the carrier of the interstellar 220 nm extinction band might also be an emitter of the interstellar diffuse emission bands.  相似文献   
755.
Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in maintaining soil physical and chemical properties, thereby affecting net primary productivity (NPP), and in the case of contained environments, the quality of the life support system. We have been using 3 controlled-environment facilities (CEF's) that incorporate different levels of soil biological complexity and environmental control, and differ in their resemblance to natural ecosystems, to study relationships among plant physiology, soil ecology, fluxes of minerals and nutrients, and overall ecosystem function. The simplest system utilizes growth chambers and specialized root chambers with organic-less media to study the physiology of plant-mycorrhizal associations. A second system incorporates natural soil in open-top chambers to study soil bacterial and fungal population response to stress. The most complex CEF incorporates reconstructed soil profiles in a "constructed" ecosystem, enabling close examination of the soil foodweb. Our results show that closed ecosystem research is important for understanding mechanisms of response to ecosystem stresses. In addition, responses observed at one level of biological complexity may not allow prediction of response at a different level of biological complexity. In closed life support systems, incorporating soil foodwebs will require less artificial manipulation to maintain system stability and sustainability.  相似文献   
756.
The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.  相似文献   
757.
Alroy J 《Astrobiology》2003,3(1):119-132
North American mammals experienced a major mass extinction at the Cretaceous/Tertiary (K/T) boundary that is tied unambiguously to the Chicxulub impact event. Immediately afterwards, there was an immense adaptive radiation that greatly expanded taxonomic diversity and the range of body sizes and ecological strategies. However, ties between later, Cenozoic impact events and specific episodes in mammalian evolution cannot be demonstrated. A time series of maximum known crater sizes within 1.0-million-year-long temporal bins is shown not to cross-correlate with five separate measures of taxonomic turnover rate, one measure of change in relative taxonomic composition, and four measures of change in body mass distributions. The lack of correlation persists even after excluding the volatile Paleocene mammalian data, adding dummy data to represent intervals without known craters, or lagging the time series against each other for up to 5 million years. Furthermore, the data fail to support broad-brush correspondences between ages of major (>20 km in diameter) craters and the timing of five key, post-K/T biotic transitions, including medium-sized extinction episodes during the late Paleocene and latest Miocene. The results challenge the idea that extraterrestrial impacts drive all, most, or even many extinction and radiation episodes in terrestrial organisms, and add to other evidence that natural, long-term biotic changes are often independent of changes in the physical environment.  相似文献   
758.
Fluid inclusions in minerals hold the potential to provide important data on the chemistry of the ambient fluids during mineral precipitation. Especially interesting to astrobiologists are inclusions in low-temperature minerals that may have been precipitated in the presence of microorganisms. We demonstrate that it is possible to obtain data from inclusions in chemosynthetic carbonates that precipitated by the oxidation of organic carbon around methane-bearing seepages. Chemosynthetic carbonates have been identified as a target rock for astrobiological exploration. Other surficial rock types identified as targets for astrobiological exploration include hydrothermal deposits, speleothems, stromatolites, tufas, and evaporites, each of which can contain fluid inclusions. Fracture systems below impact craters would also contain precipitates of minerals with fluid inclusions. As fluid inclusions are sealed microchambers, they preserve fluids in regions where water is now absent, such as regions of the martian surface. Although most inclusions are < 5 microns, the possibility to obtain data from the fluids, including biosignatures and physical remains of life, underscores the advantages of technological advances in the study of fluid inclusions. The crushing of bulk samples could release inclusion waters for analysis, which could be undertaken in situ on Mars.  相似文献   
759.
Usefulness of a short-arm human centrifuge is expected when it is used in space as a countermeasure against cardiovascular deconditioning, problem of bone-calcium metabolism, etc. However, nothing is solidly established regarding the most desirable program for artificial G application. Accordingly, this study was designed to analytically evaluate the effects of repeated long duration +Gz load on human cardiovascular function. Recently heart rate spectral analysis has been recognized as a powerful tool for quantitatively evaluating parasympathetic and sympathetic activity separately in human. It is reported that power of the high frequency component (HF-p) is mediated selectively by parasympathetic activity and the power ratio of low to high frequency components(LF/HF) is indicative of cardiac sympathetic activity or cardiac sympathovagal balance. Sequence method is developed to examine spontaneous baroreceptor reflex sensitivity (BRS). We studied cardiovascular control function by using these methods in 9 healthy men before and after 7 days of daily repeated 1hour +2Gz load. When compared with the data of pre-G load period, post-G load period, decrease of HR, increases of HF-p and BRS were statistically significant. SBP, DBP and LF/HF tended to decrease, however, these changes were not statistically significant. This results indicate that repeated +2Gz load increases parasympathetic activity and arterial baroreceptor-cardiac reflex sensitivity. In recent years, many investigators suggest that space flight and head-down bedrest leads to impaired baroreceptor-cardiac reflex responses and decrease of parasympathetic activity, which may contribute to orthostatic intolerance. So our results suggest that daily repeated 1hour +2Gz load would be useful in preventing post-flight orthostatic intolerance.  相似文献   
760.
A 10.2 psi staged-decompression schedule or a 4-hour preoxygenation at 14.7 psi is required prior to extravehicular activity (EVA) to reduce decompression sickness (DCS) risk. Results of recent research at the Air Force Research Laboratory (AFRL) showed that a 1-hour resting preoxygenation followed by a 4-hour, 4.3 psi exposure resulted in 77% DCS risk (N=26), while the same profile beginning with 10 min of exercise at 75% of VO2peak during preoxygenation reduced the DCS risk to 42% (P<.03; N=26). A 4-hour preoxygenation without exercise followed by the 4.3 psi exposure resulted in 47% DCS risk (N=30). The 1-hour preoxygenation with exercise and the 4-hour preoxygenation without exercise results were not significantly different. Elimination of either 3 hours of preoxygenation or 12 hours of staged-decompression are compelling reasons to consider incorporation of exercise-enhanced preoxygenation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号