首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2610篇
  免费   11篇
  国内免费   12篇
航空   1227篇
航天技术   885篇
综合类   13篇
航天   508篇
  2021年   25篇
  2019年   15篇
  2018年   41篇
  2017年   26篇
  2016年   27篇
  2014年   55篇
  2013年   72篇
  2012年   54篇
  2011年   122篇
  2010年   76篇
  2009年   120篇
  2008年   114篇
  2007年   68篇
  2006年   60篇
  2005年   67篇
  2004年   76篇
  2003年   87篇
  2002年   46篇
  2001年   62篇
  2000年   53篇
  1999年   55篇
  1998年   75篇
  1997年   47篇
  1996年   75篇
  1995年   83篇
  1994年   59篇
  1993年   51篇
  1992年   65篇
  1991年   33篇
  1990年   20篇
  1989年   53篇
  1988年   28篇
  1987年   24篇
  1986年   31篇
  1985年   99篇
  1984年   55篇
  1983年   56篇
  1982年   61篇
  1981年   76篇
  1980年   25篇
  1979年   29篇
  1978年   28篇
  1977年   26篇
  1976年   20篇
  1975年   21篇
  1974年   22篇
  1973年   15篇
  1970年   20篇
  1969年   19篇
  1967年   17篇
排序方式: 共有2633条查询结果,搜索用时 156 毫秒
481.
482.
This paper analyses the fuel consumption of interferometric radar missions employing small satellite formations like, e.g., Cross-track Pendulum, Cartwheel, CarPe, or Trinodal Pendulum. Individual analytic expressions are provided for each of the following contributions: separation from a simultaneously injected master satellite, formation set-up, orbit maintenance, formation maintenance, and distance maintenance. For this, a general system of equations is derived describing the relative motion of the small satellites in a co-rotating reference frame. The transformation into Keplerian elements is carried out. To evaluate fuel consumption, three master satellites are assumed in different orbital heights, which are typical for Earth observation missions. The size of the exemplarily analysed formations is defined by remote sensing aspects and their respective fuel requirements are estimated. Furthermore, a collision avoidance concept is introduced, which includes a formation separation and formation set-up after a desired time period.  相似文献   
483.
Over the last 3 years, a team at JPL has worked to design a new concept for a small, low cost lander applicable to a variety of in-situ lunar exploration activities. This concept, named Lunette, originated as a design which would exploit potential excess capacity of EELV launches by being compatible with the EELV Secondary Payload Adapter (ESPA). The original Lunette mission concept would have allowed up to six low cost landers to be delivered to a targeted region of the moon, with landings separated by a few km, allowing establishment of a regional network with a single, shared launch. The original concept faced limits in the extent of regional distribution of landing sites since all six landers were dependent on a single solid rocket braking motor. In the last year the Lunette team has focused on a modification of the original ESPA-based concept to a design that would allow launch of multiple individual landers (each with its own braking stage) on a single launch vehicle, where each lander would be capable of independent targeting and landing. With such an implementation, the entire lunar surface could be accessed for establishment of network nodes that could enable high priority geophysical measurements on a scale not seen since Apollo. The present paper discusses the current state of the design of the Lunette geophysical network lander, as well as describing mission design, science operations, and an innovative design solution allowing the lander to take critical data continuously, even over the lunar night, without the need for radioisotope power systems.  相似文献   
484.
This paper reports the main characteristics of the deep space transponder (DST) equipment that has been designed, developed and tested by Thales Alenia Space—Italy (TAS-I) for the European Space Agency (ESA) BepiColombo mission to Mercury.  相似文献   
485.
486.
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264?km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.  相似文献   
487.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   
488.
We have conducted a feasibility study for the geostationary monitoring of the diurnal variation of tropospheric NO2 over Tokyo. Using NO2 fields from a chemical transport model, synthetic spectra were created by a radiative transfer model, SCIATRAN, for summer and winter cases. We then performed a Differential Optical Absorption Spectroscopy (DOAS) analysis to retrieve NO2 slant column densities (SCDs), and after converting SCDs into vertical column densities (VCDs), we estimated the precision of the retrieved VCDs. The simulation showed that signal-to-noise ratio (SNR) ? 500 is needed to detect the diurnal variation and that SNR ? 1000 is needed to observe the local minimum occurring in the early afternoon (LT13–14) in summer. In winter, the detection of the diurnal variation during LT08–15 needs SNR ? 500, and SNR ? 1000 is needed if early morning (LT07) and early evening (LT16) are included. The currently discussed sensor specification for the Japanese geostationary satellite project, GMAP-Asia, which has a horizontal resolution of 10 km and a temporal resolution of 1hr, has demonstrated the performance of a precision of several percent, which is approximately corresponding to SNR = 1000–2000 during daytime and SNR ? 500 in the morning and evening. We also discuss possible biases caused by the temperature dependence of the absorption cross section utilized in the DOAS retrieval, and the effect of uncertainties of surface albedo and clouds on the estimation of precisions.  相似文献   
489.
We consider a special relativistic effect, known as the Poynting–Robertson effect, on various types of trajectories of solar sails. Since this effect occurs at order v?/c, where v? is the transversal speed relative to the sun, it can dominate over other special relativistic effects, which occur at order v2/c2. While solar radiation can be used to propel the solar sail, the absorbed portion of it also gives rise to a drag force in the transversal direction. For escape trajectories, this diminishes the cruising velocity, which can have a cumulative effect on the heliocentric distance. For a solar sail directly facing the sun in a bound orbit, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the sun. We also consider this effect for non-Keplerian orbits in which the solar sail is tilted in the azimuthal direction. While in principle the drag force could be counter-balanced by an extremely small tilt of the solar sail in the polar direction, periodic adjustments are more feasible.  相似文献   
490.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号