首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2610篇
  免费   11篇
  国内免费   12篇
航空   1227篇
航天技术   885篇
综合类   13篇
航天   508篇
  2021年   25篇
  2019年   15篇
  2018年   41篇
  2017年   26篇
  2016年   27篇
  2014年   55篇
  2013年   72篇
  2012年   54篇
  2011年   122篇
  2010年   76篇
  2009年   120篇
  2008年   114篇
  2007年   68篇
  2006年   60篇
  2005年   67篇
  2004年   76篇
  2003年   87篇
  2002年   46篇
  2001年   62篇
  2000年   53篇
  1999年   55篇
  1998年   75篇
  1997年   47篇
  1996年   75篇
  1995年   83篇
  1994年   59篇
  1993年   51篇
  1992年   65篇
  1991年   33篇
  1990年   20篇
  1989年   53篇
  1988年   28篇
  1987年   24篇
  1986年   31篇
  1985年   99篇
  1984年   55篇
  1983年   56篇
  1982年   61篇
  1981年   76篇
  1980年   25篇
  1979年   29篇
  1978年   28篇
  1977年   26篇
  1976年   20篇
  1975年   21篇
  1974年   22篇
  1973年   15篇
  1970年   20篇
  1969年   19篇
  1967年   17篇
排序方式: 共有2633条查询结果,搜索用时 46 毫秒
441.
An input filter is frequently employed between a switching regulator and its power source. However, its presence often results in degradation of dynamic performances and stability. The detrimental interaction is between an input filter and a switching regulator and is a function of the input filter parameters and also of the supply voltage. An earlier paper presented an analysis and design procedure aimed at developing a feed-forward loop to cancel this undesirable interaction. The feed-forward design is extended here to encompass a scheme that automatically accounts for changes in the supply voltage; the result is an adaptive compensation that tracks the input voltage variations. Experimental results are presented that confirm the adaptive nature of the design.  相似文献   
442.
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.  相似文献   
443.
444.
445.
This paper applies the Detached-Eddy Simulation (DES) method to resolve a larger part of the flow spectrum around rotor blades in hover and forward flight. A comparison between DES and Unsteady Reynolds–Averaged Navier–Stokes simulation was carried out for the case of a forward flying rotor suggesting that DES has great potential for rotor applications.  相似文献   
446.
On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real-time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path.The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications.This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter.The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site.Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations.  相似文献   
447.
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications.  相似文献   
448.
449.
Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field.  相似文献   
450.
In the presence of unknown disturbances and model parameter uncertainties, this paper develop a nonlinear backstepping sliding-mode controller (BSMC) for trajectory tracking control of a stratospheric airship using a disturbance-observer (DO). Compared with the conventional sliding mode surface (SMS) constructed by a linear combination of the errors, the new SMS manifold is selected as the last back-step error to improve independence of the adjustment of the controller gains. Furthermore, a nonlinear disturbance-observer is designed to process unknown disturbance inputs and improve the BSMC performances. The closed-loop system of trajectory tracking control plant is proved to be globally asymptotically stable by using Lyapunov theory. By comparing with traditional backstepping control and SMC design, the results obtained demonstrate the capacity of the airship to execute a realistic trajectory tracking mission, even in the presence of unknown disturbances, and aerodynamic coefficient uncertainties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号