首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7160篇
  免费   15篇
  国内免费   21篇
航空   3176篇
航天技术   2463篇
综合类   24篇
航天   1533篇
  2021年   75篇
  2019年   49篇
  2018年   161篇
  2017年   109篇
  2016年   114篇
  2015年   52篇
  2014年   184篇
  2013年   236篇
  2012年   216篇
  2011年   355篇
  2010年   239篇
  2009年   353篇
  2008年   377篇
  2007年   233篇
  2006年   169篇
  2005年   191篇
  2004年   187篇
  2003年   220篇
  2002年   152篇
  2001年   223篇
  2000年   136篇
  1999年   170篇
  1998年   198篇
  1997年   114篇
  1996年   178篇
  1995年   207篇
  1994年   193篇
  1993年   121篇
  1992年   150篇
  1991年   51篇
  1990年   49篇
  1989年   142篇
  1988年   64篇
  1987年   60篇
  1986年   73篇
  1985年   198篇
  1984年   146篇
  1983年   110篇
  1982年   117篇
  1981年   218篇
  1980年   53篇
  1979年   48篇
  1978年   52篇
  1977年   43篇
  1975年   51篇
  1974年   40篇
  1973年   34篇
  1972年   35篇
  1971年   35篇
  1970年   39篇
排序方式: 共有7196条查询结果,搜索用时 46 毫秒
941.
We present measurements of energetic hydrogen and oxygen atoms (ENAs) on the nightside of Mars detected by the neutral particle detector (NPD) of ASPERA-3 on Mars Express. We focus on the observations for which the field-of-view of NPD was directed at the nightside of Mars or at the region around the limb, thus monitoring the flow of ENAs towards the nightside of the planet. We derive energy spectra and total fluxes, and have compiled maps of hydrogen ENA outflow. The hydrogen ENA intensities reach 105 cm−2 sr−1 s−1, but no oxygen ENA signals above the detection threshold of 104 cm−2 sr−1 s−1 are observed. These intensities are considerably lower than most theoretical predictions. We explain the discrepancy as due to an overestimation of the charge-exchange processes in the models for which too high an exospheric density was assumed. Recent UV limb emission measurements (Galli et al., this issue) point to a hydrogen exobase density of 1010 m−3 and a very hot hydrogen component, whereas the models were based on a hydrogen exobase density of 1012 m−3 and a temperature of 200 K predicted by Krasnopolsky and Gladstone (1996). Finally, we estimate the global atmospheric loss rate of hydrogen and oxygen due to the production of ENAs.  相似文献   
942.
Application of the degeneration sensitive, cupric-silver staining method to brain sections of male Sprague-Dawley rats irradiated 4 days before sacrifice with 155 Mev protons, 2-8 Gy at 1 Gy/min (N=6) or 22-l0lGy at 20 Gy/min (N=16) or with 18.6 Mev electrons, 32-67 Gy at 20 Gy/min (N=20), doses which elicit behavioral changes (accelerod or conditioned taste aversion), resulted in a display of degeneration of astrocyte-like cell profiles which were not uniformly distributed. Plots of 'degeneration scores' (counts of profiles in 29 areas) vs. dose for the proton and electron irradiations displayed a linear dose response for protons in the range of 2-8 Gy. In the 20-100 Gy range, for both electrons and protons the points were distributed in a broad band suggesting a saturation curve. The dose range in which these astrocyte-like profiles becomes maximal corresponds well with the dose range for the X-ray eradication of a subtype of astrocytes, 'beta astrocytes'.  相似文献   
943.
The current status of the theory of a new astrophysical phenomenon, aradiation-driven diskon, is outlined.The cyclotron radiation pressure around sufficiently hot, strongly magnetized white dwarfs and neutron stars is shown to be able to drive a wind from the photosphere and support a plasma envelope in the closed part of the magnetosphere. The magnetohydrostatic configuration of an optically thin, radiatively supported plasma envelope is determined. It consists of an equatorial disk in the region where the cyclotron radiation force exceeds the local force of gravity and a closed shell near the equilibrium surface where the radiation pressure equals gravity. The effects of finite optical depth on the behaviour of the magnetospheric plasma and the influence of the envelope on the observed radiation are discussed.Classes of magnetic degenerate stars are pointed out in which radiation-driven diskons may be found. The best candidates are two individual stars, the strongly magnetized white dwarfs GD 229 and PG 1031+234. Both exhibit broad and deep depressions in the ultraviolet which are explained as a result of cyclotron scattering by an optically thick radiation-driven envelope in the inhomogeneous magnetic field of the star. We predict a temporal and spectral variability of these features due to non-stationary plasma motions in the envelope.  相似文献   
944.
The solar activity and geomagnetic storm events of March and June 1991 were associated with the appearance of an enhanced particle flux in the trapped radiation belts as discovered by the CRRES satellite observations and later measured by shuttle radiation detectors. The solar-interplanetary conditions associated with these events appear to be a major sequence of activity near the sun's central meridian generating powerful fast interplanetary shocks resulting in major perturbations to the magnetosphere. The solar-interplanetary events in 1991 are discussed and compared to similar activity in the past such as the events in February 1986, August 1972, July 1961, November 1960, and July 1959.  相似文献   
945.
The development of legume root nodules was studied as a model system for the examination of gravitational effects on plant root development. In order to examine whether rhizobial association with clover roots can be achieved in microgravity, experiments were performed aboard the KC-135 parabolic aircraft and aboard the sounding rocket mission Consort 3. Binding of rhizobia to roots and the initial stages of root nodule development successfully occurred in microgravity. Seedling germination experiments were performed in the sliding block device, the Materials Dispersion Apparatus, aboard STS-37. When significant hydration of the seeds was achieved, normal rates of germination and seedling development were observed.  相似文献   
946.
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.  相似文献   
947.
The general goal of the experiment was to study the response of anhydrobiotic (metabolically dormant) microorganisms (spores of Bacillus subtilis, cells of Deinococcus radiodurans, conidia of Aspergillus species) and cellular constituents (plasmid DNA, proteins, purple membranes, amino acids, urea) to the extremely dehydrating conditions of open space, in some cases in combination with irradiation by solar UV-light. Methods of investigation included viability tests, analysis of DNA damages (strand breaks, DNA-protein cross-links) and analysis of chemical effects by spectroscopic, electrophoretic and chromatographic methods. The decrease in viability of the microorganisms was as expected from simulation experiments in the laboratory. Accordingly, it could be correlated with the increase in DNA damages. The purple membranes, amino acids and urea were not measurably effected by the dehydrating condition of open space (in the dark). Plasmid DNA, however, suffered a significant amount of strand breaks under these conditions. The response of these biomolecules to high fluences of short wavelength solar UV-light is very complex. Only a brief survey can be given in this paper. The data on the relatively good survival of some of the microorganisms call for strict observance of COSPAR Planetary Protection Regulations during interplanetary space missions.  相似文献   
948.
The problem of Earth-pointing attitude control for a spacecraft with magnetic actuators is addressed and a novel approach to the problem is proposed, which guarantees almost global closed loop stability of the desired relative attitude equilibrium for the spacecraft. Precisely, a proportional derivative (PD)-like state feedback control law is employed together with a suitable adaptation mechanism for the controller gain. Simulation results are presented, which illustrate the performance of the proposed control law  相似文献   
949.
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System as envisioned by the U.S. National Aeronautics and Space Administration. In studies conducted with biodegradative microorganisms indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30°C were optimal for degradation. The composition of the biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in their ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog 4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.  相似文献   
950.
Microbiological contamination of crops within space-based plant growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growth systems in space habitats. Microorganisms transported into space most likely will occur as surface contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests, and technology developments, structured to allow the development of prudent engineering solutions also will be presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号