首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   0篇
航空   149篇
航天技术   6篇
航天   21篇
  2018年   68篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   13篇
  2010年   6篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2001年   5篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1985年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有176条查询结果,搜索用时 93 毫秒
111.
Gamma-ray lines arise from radioactivities produced in nucleosynthesis sites, and from deexcitation of nuclei which have been activated through energetic particle collisions. Since the bulk of nucleosynthesis activity relates to activities inside massive stars, both these processes are related to the likely sources of cosmic rays: Supernova remnants show radioactivity afterglows at time scales which bracket their likely phases of relevance as CR acceleration sites; 26Al radioactivity may trace regions of intense wind interactions from groups of massive stars, and also encode information about the possible injection of matter into CR acceleration environments through interstellar dust grains. The status of -ray line measurements after the Compton Observatory mission is presented, with models and interpretations of current results, and the prospects of upcoming measurements.  相似文献   
112.
Components of the earth radiation budget have been calculated on a regular basis since June 1974 (except for a 10 month gap in data in 1978) based on measurements by the scanning radiometers and the advanced very high resolution radiometers on the operational NOAA polar orbiting satellites. A new base set of monthly and seasonal averages of outgoing longwave radiation has been prepared by NOAA's Climate Analysis Center (CAC) for the entire period of record through November 1983. Anomalies relative to these new normals have now been constructed for each month and season in the entire record.In this presentation, some of the more prominent anomalies of outgoing longwave radiation over the past decade are discussed. A major concentration is on the tropics and subtropics where there have been very substantial radiation variations associated with major shifts in convective cloudiness accompanying El Niño/Southern Oscillation events.  相似文献   
113.
An important but untested aspect of the lithopanspermia hypothesis is that microbes situated on or within meteorites could survive hypervelocity entry from space through Earth's atmosphere. The use of high-altitude sounding rockets to test this notion was explored. Granite samples permeated with spores of Bacillus subtilis strain WN511 were attached to the exterior telemetry module of a sounding rocket and launched from White Sands Missile Range, New Mexico into space, reaching maximum atmospheric entry velocity of 1.2 km/s. Maximum recorded temperature during the flight was measured at 145 degrees C. The surfaces of the post-flight granite samples were swabbed and tested for recovery and survival of WN511 spores, using genetic markers and the unique DNA fingerprint of WN511 as recovery criteria. Spore survivors were isolated at high frequency, ranging from 1.2% to 4.4% compared with ground controls, from all surfaces except the forward-facing surface. Sporulation-defective mutants were noted among the spaceflight survivors at high frequency (4%). These experiments constitute the first report of spore survival to hypervelocity atmospheric transit, and indicate that sounding rocket flights can be used to model the high-speed atmospheric entry of bacteria-laden artificial meteorites.  相似文献   
114.
A great deal of the research done on the dynamical process of the solar wind- magnetosphere interaction is based on large-scale, quasi-steady theoretical models, such as the classical reconnection model. However, it can be argued that the theoretical and observational foundations of these commonly believed paradigms are not always strong, and support for these models is sometimes weak, controversial or inconsistent. This paper discusses the need for a transition from an oversimplified quasi-steady paradigm towards a more realistic one including the dynamics of MHD waves and wave packets. The effects of localized wave packets may be most important in active plasma regions, where ideal MHD breaks down and localized, time-dependent processes become dominant. New insights into the theories of field-aligned current generation, auroral particle acceleration and the concept of reconnection may be found by including MHD wave propagation and wave packet dynamics.  相似文献   
115.
基于对压气机、涡轮与燃烧室共同工作条件的分析,建立了1种快速简便的单轴燃气发生器性能仿真模型;用Modelica语言和Dymola编译器实现了单轴燃气发生器的性能仿真,验证了该模型的有效性。结果表明:该模型能够模拟单轴燃气发生器的性能,并能实现非设计转速小流量工况下的性能仿真。  相似文献   
116.
基于Modelica和Dymola的压气机系统的建模与仿真方法   总被引:1,自引:1,他引:1  
基于压气机性能方程推导出一种新的压气机级的数学模型,并在这一模型基础上用Modelica语言和Dymola编译器建立了计算机仿真模型,编成了压气机系统仿真程序。还描述了压气机仿真程序建模系统和面向对象的体系结构,介绍了压气机系统特性分析的应用例子,并进行了仿真验证。结果表明,采用建立的仿真模型能够用来模拟压气机性能。  相似文献   
117.
We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time-delays from strongly lensed quasars currently provide constraints on \(H_{0}\) with \(<4\%\) uncertainty, and with \(1\%\) within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to \(z\lesssim0.8\) with galaxies and \(z\sim2\) with Ly-\(\alpha\) forest, providing precise distance measurements and \(H_{0}\) with \(<2\%\) uncertainty in flat \(\Lambda\)CDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at \(z\sim0.8\) and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach \(1\%\) uncertainty in determining \(H_{0}\), to assess the current tension in \(H_{0}\) measurements that could indicate new physics.  相似文献   
118.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   
119.
Clouds and Hazes of Venus   总被引:1,自引:0,他引:1  
More than three decades have passed since the publication of the last review of the Venus clouds and hazes. The paper published in 1983 in the Venus book summarized the discoveries and findings of the US Pioneer Venus and a series of Soviet Venera spacecraft (Esposito et al. in Venus, p. 484, 1983). Due to the emphasis on in-situ investigations from descent probes, those missions established the basic features of the Venus cloud system, its vertical structure, composition and microphysical properties. Since then, significant progress in understanding of the Venus clouds has been achieved due to exploitation of new observation techniques onboard Galileo and Messenger flyby spacecraft and Venus Express and Akatsuki orbiters. They included detailed investigation of the mesospheric hazes in solar and stellar occultation geometry applied in the broad spectral range from UV to thermal IR. Imaging spectroscopy in the near-IR transparency “windows” on the night side opened a new and very effective way of sounding the deep atmosphere. This technique together with near-simultaneous UV imaging enabled comprehensive study of the cloud morphology from the cloud top to its deep layers. Venus Express operated from April 2006 until December 2014 and provided a continuous data set characterizing Venus clouds and hazes over a time span of almost 14 Venus years thus enabling a detailed study of temporal and spatial variability. The polar orbit of Venus Express allowed complete latitudinal coverage. These studies are being complemented by JAXA Akatsuki orbiter that began observations in May 2016. This paper reviews the current status of our knowledge of the Venus cloud system focusing mainly on the results acquired after the Venera, Pioneer Venus and Vega missions.  相似文献   
120.
Meteor impacts and/or meteor events generate body and surface seismic waves on the surface of a planet. When meteoroids burst in the atmosphere, they generate shock waves that subsequently convert into acoustic waves in the atmosphere and seismic waves in the ground. This effect can be modeled as the amplitude of Rayleigh and other Spheroidal modes excitation, due to atmospheric/ground coupling effects.First, an inversion of the seismic source of Chelyabinsk superbolide is performed. We develop an approach in order to model a line source in the atmosphere, corresponding to the consecutive generation of shock waves by the interaction with the atmosphere. The model is based on the known trajectory. We calculate the synthetic seismograms of Rayleigh waves associated with the event by the summation of normal modes of a model of the solid part and the atmosphere of the planet. Through an inversion technique based on singular value decomposition, we perform a full Rayleigh wave inversion and we provide solutions for the moment magnitude.SEIS will likely detect seismic waves generated by impacts and the later might be further located by remote sensing differential processing. In the case of Mars, we use the same method to obtain waveforms associated with impacts on the planetary surface or in low altitudes in the Martian atmosphere. We show that the contribution of the fundamental spheroidal solid mode is dominating the waveforms, compared to that of the first two overtones. We perform an amplitude comparison and we show that small impactors (diameter of 0.5 to 2 m), can be detected by the SEIS VBB seismometer of InSight mission, even in short epicentral distances, in the higher frequencies of the Rayleigh waves. We perform an analysis based on impact rate estimations and we calculate the number of detectable events of 1 meter diameter meteor impacts to be 6.7 to 13.4 per 1 Martian year for a \(Q=500\).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号