首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   1篇
  国内免费   2篇
航空   101篇
航天技术   51篇
综合类   2篇
航天   88篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   19篇
  2008年   9篇
  2007年   15篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   4篇
  1967年   8篇
  1966年   5篇
排序方式: 共有242条查询结果,搜索用时 31 毫秒
151.
The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin.  相似文献   
152.
153.
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth’s limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.  相似文献   
154.
We focus on preventing collisions between debris and debris, for which there is no current, effective mitigation strategy. We investigate the feasibility of using a medium-powered (5 kW) ground-based laser combined with a ground-based telescope to prevent collisions between debris objects in low-Earth orbit (LEO). The scheme utilizes photon pressure alone as a means to perturb the orbit of a debris object. Applied over multiple engagements, this alters the debris orbit sufficiently to reduce the risk of an upcoming conjunction. We employ standard assumptions for atmospheric conditions and the resulting beam propagation. Using case studies designed to represent the properties (e.g. area and mass) of the current debris population, we show that one could significantly reduce the risk of nearly half of all catastrophic collisions involving debris using only one such laser/telescope facility. We speculate on whether this could mitigate the debris fragmentation rate such that it falls below the natural debris re-entry rate due to atmospheric drag, and thus whether continuous long-term operation could entirely mitigate the Kessler syndrome in LEO, without need for relatively expensive active debris removal.  相似文献   
155.
Since Global Navigation Satellite System(GNSS) signals span a wide range of frequency, wireless signals coming from other communication systems may be aliased and appear as image interference. In quadrature intermediate frequency(IF) receivers, image aliasing due to in-phase and quadrature(I/Q) channel mismatches is always a big problem. I/Q mismatches occur because of gain and phase imbalances between quadrature mixers and capacitor mismatches in analog-to-digital converters(ADC). As a result, the dynamic range and performance of a receiver are severely degraded. In this paper, several popular receiver architectures are summarized and the image aliasing problem is investigated in detail. Based on this analysis, a low-IF architecture is proposed for a single-chip solution and a novel and feasible anti-image algorithm is investigated. With this anti-image digital processing, the image reject ratio(IRR) can reach approximately above50 dB, which relaxes image rejection specific in front-end circuit designs and allows cheap and highly flexible analog front-end solutions. Simulation and experimental data show that the antiimage algorithm can work effectively, robustly, and steadily.  相似文献   
156.
We used one-dimensional photochemical and radiative transfer models to study the potential of organic sulfur compounds (CS(2), OCS, CH(3)SH, CH(3)SCH(3), and CH(3)S(2)CH(3)) to act as remotely detectable biosignatures in anoxic exoplanetary atmospheres. Concentrations of organic sulfur gases were predicted for various biogenic sulfur fluxes into anoxic atmospheres and were found to increase with decreasing UV fluxes. Dimethyl sulfide (CH(3)SCH(3), or DMS) and dimethyl disulfide (CH(3)S(2)CH(3), or DMDS) concentrations could increase to remotely detectable levels, but only in cases of extremely low UV fluxes, which may occur in the habitable zone of an inactive M dwarf. The most detectable feature of organic sulfur gases is an indirect one that results from an increase in ethane (C(2)H(6)) over that which would be predicted based on the planet's methane (CH(4)) concentration. Thus, a characterization mission could detect these organic sulfur gases-and therefore the life that produces them-if it could sufficiently quantify the ethane and methane in the exoplanet's atmosphere.  相似文献   
157.
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.  相似文献   
158.
The Selfish Biocosm hypothesis asserts that the anthropic qualities which our universe exhibits can be explained as incidental consequences of a cosmological replication cycle in which a cosmologically extended biosphere supplies two of the essential elements of self-replication identified by von Neumann.Further, the hypothesis asserts that the emergence of life and intelligence are key epigenetic thresholds in the cosmological replication cycle, strongly favored by the physical laws and constants of inanimate nature. A falsifiable implication of the hypothesis is that the emergence of increasingly intelligent life is a robust phenomenon, stongly favored by the natural processes of biological evolution  相似文献   
159.
Probability of Collision Error Analysis   总被引:6,自引:0,他引:6  
The decision for the International Space Station (ISS) to maneuver to avoid a potential collision with another space object will be based on the probability of collision, P C. The calculation of P C requires the covariance of both objects at conjunction. It is well known that the covariance computed by US Space Command is optimistic (too small), especially at altitudes where atmospheric drag is the dominant perturbation, because its computation assumes there are no dynamic model errors. In this paper the effect of errors in the covariance on P C and the sensitivity of P C to the encounter geometry are investigated.  相似文献   
160.
The NASA Deep Space Network (DSN) has a new requirement to support high-data-rate Category A (Cat A) missions (within 2 million kilometers of the Earth) with simultaneous S-band uplink, S-band downlink and Ka-band downlink. The S-band links are required for traditional telemetry, tracking & command (TT&C) support to the spacecraft, while the Ka-band link is intended for high-data-rate science returns. The new Ka-band system combines the use of proven DSN cryogenic designs, for low system temperature, and high-data-rate capability using commercial telemetry receivers. The initial Cat A support is required for the James Webb Space Telescope (JWST) in 2014 and possibly other missions. The upgrade has been implemented into 3 different 34-meter Beam Waveguide (BWG) antennas in the DSN, one at each of the complexes in Canberra (Australia), Goldstone (California) and Madrid (Spain). System test data are presented to show that the requirements were met and the DSN is ready for Cat A Ka-band operational support.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号