首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
航空   18篇
航天技术   10篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   5篇
  2011年   1篇
  2009年   1篇
  2003年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
11.
The accuracy of presently available IR horizon sensors is not sufficient to meet the stringent attitude sensing and control requirements for future remote sensing and meteorological satellites. The different sources of error in a horizon sensor are analyzed. The accuracy of the sensor is presently limited by the detector noise. Use of HgCdTe in place of an immersed bolometer detector, which is used in conventional horizon sensors eliminates many of the errors. Hence, it is possible to design an ultimate IR horizon sensor whose accuracy is limited only by the uncertainty of the Earth horizon. Comparison of performances of the two types of detectors for horizon sensing is given and possible configurations of sensor using this detector are discussed.  相似文献   
12.
GPS satellites data obtained at Bhopal (23.16° N, 77.36° E, geomagnetic latitude 14.23° N) India were analyzed to study the TEC changes during several geomagnetic storms (−300 nT < Dst < −50 nT) occurred in 2005–2007. We had segregated the storms according to the Dst value, i.e. moderate storms (−100 nT < Dst ? −50 nT), strong storms (−150 nT < Dst < −100 nT), and severe storms (Dst less than −150 nT). Total of 21 geomagnetic storms (10 moderate, 9 strong, 2 severe) are considered for the present study. Deviation in vertical total electron content (VTEC) during the main phase of the storm was found to be associated with the prompt penetration of electric field originated due to the under-shielding and over-shielding conditions for almost all geomagnetic storms discussed in this paper. For most of the storms VTEC shows the positive percentage deviation during the main phase while it shows positive as well as the negative deviation during the recovery phase of the storms. The −80% deviation in VTEC was found for geomagnetic storm occurred on July 17, 2005 and the negative trend continued for recovery phase of the storm. This was mainly due to the thermospheric composition changes by Joule heating effect at auroral latitudes that generate electric field disturbance at low latitudes. Traveling ionospheric disturbances (TIDs) were responsible for the formation of wave like nature in VTEC for the storms occurred on May 15, 2005, whereas it was not observed for storm occurred on August 24, 2005.  相似文献   
13.
Synthetic Aperture Radar (SAR) is an airborne (or spaceborne) radar mapping technique for generating high resolution maps of surface target areas including terrain. High resolution is achieved by coherently combining the returns from a number of radar transmissions. The resolution of the images is determined by the parameters of the emissions, with more data giving greater resolution. A requirement of the Microwave Radar Division's SAR radar is to provide classification of targets. This paper presents a technique for enhancing slant range resolution in SAR images by dithering the carrier centre frequency of the transmitted signal. The procedure controls the radar waveforms so they will optimally perform the classification function, rather than provide an image of best quality. It is shown that a Knowledge-Based engineering approach to determining the waveform of the radar gives considerably improved performance as a classifier of targets (of large radar cross-section), even though the corresponding image is degraded  相似文献   
14.
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas  相似文献   
15.
The ionospheric Total Electron Content (TECs), derived by dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Bhopal (23.2°N, 77.4°E, Geomagnetic 14.2°N) were analyzed for the period of January, 2005 to February, 2008. The work deals with monthly, diurnal, solar and magnetic activity variations on night-time enhancement in TEC. From a total of 157 night-time enhancements, 75 occur during pre-midnight and 82 post-midnight hours. The occurrence of night-time enhancement in TEC is utmost during summer months, followed by equinox and winter months. The occurrence of night-time enhancement in TEC decreases with increase in solar and magnetic activities. We observed that peak size and half amplitude duration are positively correlated, while time of occurrence of night-time enhancement in TEC and time of peak enhancement are negatively correlated with solar activity. The peak size, half amplitude duration, time of peak enhancement and time of occurrence of night-time enhancement in TEC shows negative correlation with magnetic activity. The results have been compared with the earlier ones and discussed in terms of possible source mechanism responsible for the enhancement at anomaly crest region.  相似文献   
16.
Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small-amplitude oscillations” (2–3 km?s?1), which are quite common, and “large-amplitude oscillations” (>20 km?s?1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fast-mode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology.  相似文献   
17.
This paper presents a robust method of testing a processor based on-board computer used in the Indian remote sensing satellite (IRS-1C). The novelty of this scheme lies in a judicious mix of software and hardware approaches adopted to realise this PC-based system. All the electrical interfaces (like telemetry, Telecommand, timer and star sensor) are simulated. They are fabricated as add-on cards to PC-AT (ISAbus). The on-board computer controls two star sensors apart from handling three telemetry streams and accepting more than one hundred Telecommands  相似文献   
18.
This paper attempts to examine the control of electron density and solar activity on the F-region electron temperature. This is achieved by obtaining coefficients relating electron temperature with electron density and solar activity by using incoherent scatter radar measurements at Arecibo for the period August 1966 to May 1977. These coefficients are then used to construct an empirical model of F-region electron temperature. The model values are compared with measurements at other locations and show reasonable agreement.  相似文献   
19.
We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173?Å as well as intensity at 1600?Å and 1700?Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10?mHz in HMI Doppler and AIA 1700?Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.  相似文献   
20.
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号