全文获取类型
收费全文 | 5420篇 |
免费 | 9篇 |
国内免费 | 18篇 |
专业分类
航空 | 2838篇 |
航天技术 | 1921篇 |
综合类 | 23篇 |
航天 | 665篇 |
出版年
2021年 | 30篇 |
2019年 | 32篇 |
2018年 | 57篇 |
2017年 | 31篇 |
2014年 | 82篇 |
2013年 | 132篇 |
2012年 | 108篇 |
2011年 | 155篇 |
2010年 | 114篇 |
2009年 | 177篇 |
2008年 | 245篇 |
2007年 | 136篇 |
2006年 | 140篇 |
2005年 | 143篇 |
2004年 | 114篇 |
2003年 | 171篇 |
2002年 | 101篇 |
2001年 | 176篇 |
2000年 | 109篇 |
1999年 | 140篇 |
1998年 | 164篇 |
1997年 | 123篇 |
1996年 | 169篇 |
1995年 | 215篇 |
1994年 | 182篇 |
1993年 | 120篇 |
1992年 | 127篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 139篇 |
1988年 | 62篇 |
1987年 | 66篇 |
1986年 | 60篇 |
1985年 | 195篇 |
1984年 | 150篇 |
1983年 | 130篇 |
1982年 | 134篇 |
1981年 | 176篇 |
1980年 | 58篇 |
1979年 | 41篇 |
1978年 | 50篇 |
1977年 | 53篇 |
1976年 | 38篇 |
1975年 | 58篇 |
1974年 | 38篇 |
1973年 | 42篇 |
1972年 | 51篇 |
1971年 | 43篇 |
1970年 | 44篇 |
1969年 | 37篇 |
排序方式: 共有5447条查询结果,搜索用时 15 毫秒
61.
Examination of the spatial distribution of CO intensity of Comet Halley indicates that a large fraction of CO originates from
the refractory organic component in the coma, rather than directly from the volatiles in the nucleus. Based on the fluffy
aggregate interstellar dust comet model, we have estimated the upper limits of the total amount of CO provided by coma dust.
The implications from the comparison of the predicted results with the observed value have been discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
62.
Detailed derivation of the transfer function for a multigimbal, elastically supported, tuned gyro is presented and comparison made between its characteristics and those of a classical two-axis, free-rotor gyro. Knowledge of the gyro transfer function is necessary for the purpose of servo analysis of the system in which the gyro is used; also, the transfer function is a basis of evaluation of errors caused by angular inputs that occur at twice spin frequency. 相似文献
63.
The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories 总被引:1,自引:0,他引:1
A. B. Galvin L. M. Kistler M. A. Popecki C. J. Farrugia K. D. C. Simunac L. Ellis E. Möbius M. A. Lee M. Boehm J. Carroll A. Crawshaw M. Conti P. Demaine S. Ellis J. A. Gaidos J. Googins M. Granoff A. Gustafson D. Heirtzler B. King U. Knauss J. Levasseur S. Longworth K. Singer S. Turco P. Vachon M. Vosbury M. Widholm L. M. Blush R. Karrer P. Bochsler H. Daoudi A. Etter J. Fischer J. Jost A. Opitz M. Sigrist P. Wurz B. Klecker M. Ertl E. Seidenschwang R. F. Wimmer-Schweingruber M. Koeten B. Thompson D. Steinfeld 《Space Science Reviews》2008,136(1-4):437-486
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ~0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided. 相似文献
64.
One of the Skylab experiments dealt with motion sickness, comparing susceptibility in the workshop aloft with susceptibility preflight and postflight. Tests were conducted on and after mission-day 8 (MD 8) by which time the astronauts were adapted to working conditions. Stressful accelerations were generated by requiring the astronauts, with eyes covered, to execute standardized head movements (front, back, left, and right) while in a chair that could be rotated at angular velocities up to 30 rpm. The selected endpoint was either 150 discrete head movements or a very mild level of motion sickness. In all rotation experiments aloft, the five astronauts tested (astronaut 1 did not participate) were virtually symptom free, thus demonstrating lower susceptibility aloft than in preflight and postflight tests on the ground when symptoms were always elicited. Inasmuch as the eyes were covered and the canalicular stimuli were the same aloft as on the ground, it would appear that lifting the stimulus to the otolith organs due to gravity was an important factor in reducing susceptibility to motion sickness even though the transient stimuli generated under the test conditions were substantial and abnormal in pattern. Some of the astronauts experienced motion sickness under operational conditions aloft or after splashdown, but attention is centered chiefly on symptoms manifested in zero gravity. None of the Skylab-II crew (astronauts 1 to 3) was motion sick aloft. Astronaut 6 of the Skylab-III crew (astronauts 4 to 6) experienced motion sickness within an hour after transition into orbit; this constitutes the earliest such diagnosis on record under orbital flight conditions. The eliciting stimuli were associated with head and body movements, and astronaut 6 obtained relief by avoiding such movements and by one dose of the drug combination 1-scopolamine 0.35 mg + d-amphetamine 5.0 mg. All three astronauts of Skylab-III experienced motion sickness in the workshop where astronaut 6 was most susceptible and astronaut 4, least susceptible. The higher susceptibility of SL-III crewmen in the workshop, as compared with SL-II crewmen, may be attributable to the fact that they were based in the command module less than one-third as long as SL-II crewmen. The unnatural movements, often resembling acrobatics, permitted in the open spaces of the workshop revealed the great potentialities in weightlessness for generating complex interactions of abnormal or unusual vestibular and visual stimuli. Symptoms were controlled by body restraint and by drugs, but high susceptibility to motion sickness persisted for 3 days and probably much longer; restoration was complete on MD 7. From the foregoing statements it is clear that on and after MD 8 the susceptibility of SL-II and SL-III crewmen to motion sickness under experimental conditions was indistinguishable. The role played by the acquisition of adaptation effects prior to MD 8 is less clear and is a subject to be discussed. 相似文献
65.
Kerwin JP 《Acta Astronautica》1975,2(1-2):85-87
The facts presented represent, for convenience, a composite clinical picture of the three crewmen aboard Skylab II as observed by me. 相似文献
66.
67.
S.I. Oronsaye L.A. McKinnell J.B. Habarulema 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
A new version of global empirical model for the ionospheric propagation factor, M(3000)F2 prediction is presented. Artificial neural network (ANN) technique was employed by considering the relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. This new version is an update to the previous neural network based M(3000)F2 global model developed by Oyeyemi et al. (2007), and aims to address the inadequacy of the International Reference Ionosphere (IRI) M(3000)F2 model (the International Radio Consultative Committee (CCIR) M(3000)F2 model). The M(3000)F2 has been found to be relatively inaccurate in representing the diurnal structure of the low latitude region and the equatorial ionosphere. In particular, the existing hmF2 IRI model is unable to reproduce the sharp post-sunset drop in M(3000)F2 values, which correspond to a sharp post-sunset peak in the peak height of the F2 layer, hmF2. Data from 80 ionospheric stations globally, including a good number of stations in the low latitude region were considered for this work. M(3000)F2 hourly values from 1987 to 2008, spanning all periods of low and high solar activity were used for model development and verification process. The ability of the new model to predict the M(3000)F2 parameter especially in the low latitude and equatorial regions, which is known to be problematic for the existing IRI model is demonstrated. 相似文献
68.
A. Debus J. Arnould 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account. 相似文献
69.
70.
S. Gburek T. Mrozek M. Siarkowski J. Sylwester 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We use simultaneous observations from RESIK and RHESSI instruments to compare plasma properties of a major solar flare in its rise and gradual phase. This event occurred on 2002 August 3 (peak time at 19:06 UT). The flare had a very good coverage with RESIK data and well-resolved soft and hard X-ray sources were seen in RHESSI images. Spectra of X-ray radiation from RHESSI images are studied and compared with RESIK measurements in different flare phases. Result shows large differences in flare morphology and spectra between flare rise and gradual phase. 相似文献