首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7683篇
  免费   16篇
  国内免费   24篇
航空   3785篇
航天技术   2691篇
综合类   203篇
航天   1044篇
  2019年   50篇
  2018年   103篇
  2017年   53篇
  2016年   54篇
  2014年   136篇
  2013年   191篇
  2012年   157篇
  2011年   244篇
  2010年   160篇
  2009年   272篇
  2008年   349篇
  2007年   197篇
  2006年   187篇
  2005年   205篇
  2004年   174篇
  2003年   231篇
  2002年   240篇
  2001年   301篇
  2000年   140篇
  1999年   199篇
  1998年   230篇
  1997年   171篇
  1996年   231篇
  1995年   277篇
  1994年   230篇
  1993年   143篇
  1992年   175篇
  1991年   91篇
  1990年   84篇
  1989年   178篇
  1988年   79篇
  1987年   83篇
  1986年   80篇
  1985年   263篇
  1984年   217篇
  1983年   166篇
  1982年   189篇
  1981年   244篇
  1980年   76篇
  1979年   57篇
  1978年   64篇
  1977年   67篇
  1976年   48篇
  1975年   70篇
  1974年   58篇
  1973年   51篇
  1972年   63篇
  1971年   56篇
  1970年   62篇
  1969年   59篇
排序方式: 共有7723条查询结果,搜索用时 31 毫秒
161.
The growth of the Intelsat Global Commercial Communications Satellite System, which provides the facilities used to exchange television programs among many countries of the world, is described. Service was initiated between North America and Western Europe in 1965. Currently, some 48 separate geographic areas throughout the world are interconnected by the Intelsat System. The unique air-transportable Earth terminal, developed by the General Electric Company, at the request of the television networks, to meet the special requirements for providing live television coverage in color of the Apollo recoveries at sea, will also be described.  相似文献   
162.
163.
The delay-lock loop is a device for tracking the delay difference between two correlated waveforms. It is used as a synchronizing loop for binary communications and tracking. The delay tracking performance is derived for various radio-frequency implementations of the binary delay-lock loop. Amplitude and biphase modulation by pseudorandom sequences are considered. Three types of receivers are analyzed for each modulation: envelope correlation, phase-coherent correlation, and phase-lock demodulation followed by video correlation.  相似文献   
164.
Solar oscillations provide the most accurate measures of cycle dependent changes in the sun, and the Solar and Heliospheric Observatory/Michelson Doppler Imager (MDI) data are the most precise of all. They give us the opportunity to address the real challenge — connecting the MDI seismic measures to observed characteristics of the dynamic sun. From inversions of the evolving MDI data, one expects to determine the nature of the evolution, through the solar cycle, of the layers just beneath the sun's surface. Such inversions require one to guess the form of the causal perturbation — usually beginning with asking whether it is thermal or magnetic. Matters here are complicated because the inversion kernels for these two are quite similar, which means that we don't have much chance of disentangling them by inversion. However, since the perturbation lies very close to the solar surface, one can use synoptic data as an outer boundary condition to fix the choice. It turns out that magnetic and thermal synoptic signals are also quite similar. Thus, the most precise measure of the surface is required.

We argue that the most precise synoptic data come from the Big Bear Solar Observatory (BBSO) Solar Disk Photometer (SDP). A preliminary analysis of these data implies a magnetic origin of the cycle-dependent sub-surface perturbation. However, we still need to do a more careful removal of the facular signal to determine the true thermal signal.  相似文献   

165.
Dynamical and thermal variations of the internal structure of the Sun can affect the energy flow and result in variations in irradiance at the surface. Studying variations in the interior is crucial for understanding the mechanisms of the irradiance variations. “Global” helioseismology based on analysis of normal mode frequencies, has helped to reveal radial and latitudinal variations of the solar structure and dynamics associated with the solar cycle in the deep interior. A new technique, - “local-area” helioseismology or heliotomography, offers additional potentially important diagnostics by providing three-dimensional maps of the sound speed and flows in the upper convection zone. These diagnostics are based on inversion of travel times of acoustic waves which propagate between different points on the solar surface through the interior. The most significant variations in the thermodynamic structure found by this method are associated with sunspots and complexes of solar activity. The inversion results provide evidence for areas of higher sound speed beneath sunspot regions located at depths of 4–20 Mm, which may be due to accumulated heat or magnetic field concentrations. However, the physics of these structures is not yet understood. Heliotomography also provides information about large-scale stable longitudinal structures in the solar interior, which can be used in irradiance models. This new diagnostic tool for solar variability is currently under development. It will require both a substantial theoretical and modeling effort and high-resolution data to develop new capabilities for understanding mechanisms of solar variability.  相似文献   
166.
The SOHO Solar EUV Monitor has been in operation since December 1995 onboard the SOHO spacecraft. This instrument is a highly stable transmission grating solar extreme ultraviolet spectrometer. It has made nearly continuous full disk solar irradiance measurements both within an 8 nm bandpass centered at 30.4 nm and throughout the 0.1 to 50 nm solar flux region since launch. The 30.4 nm flux, the 0.1 to 50 nm flux and the extracted soft X-ray (0.1 to 5 nm) flux are presented and compared with the behavior of solar proxies.  相似文献   
167.
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”).  相似文献   
168.
We describe a Mars ‘Micro Mission’ for detailed study of the martian satellites Phobos and Deimos. The mission involves two ∼330 kg spacecraft equipped with solar electric propulsion to reach Mars orbit. The two spacecraft are stacked for launch: an orbiter for remote investigation of the moons and in situ studies of their environment in Mars orbit, and another carrying a lander for in situ measurements on the surface of Phobos (or alternatively Deimos). Phobos and Deimos remain only partially studied, and Deimos less well than Phobos. Mars has almost always been the primary mission objective, while the more dedicated Phobos project (1988–89) failed to realise its full potential. Many questions remain concerning the moons’ origins, evolution, physical nature and composition. Current missions, such as Mars Express, are extending our knowledge of Phobos in some areas but largely neglect Deimos. The objectives of M-PADS focus on: origins and evolution, interactions with Mars, volatiles and interiors, surface features, and differences. The consequent measurement requirements imply both landed and remote sensing payloads. M-PADS is expected to accommodate a 60 kg orbital payload and a 16 kg lander payload. M-PADS resulted from a BNSC-funded study carried out in 2003 to define candidate Mars Micro Mission concepts for ESA’s Aurora programme.  相似文献   
169.
In this work a methodology for inferring water cloud macro and microphysical properties from nighttime MODIS imagery is developed. This method is based on the inversion of a theoretical radiative transfer model that simulates the radiances detected in each of the sensor infrared bands. To accomplish this inversion, an operational technique based on Artificial Neural Networks (ANNs) is proposed, whose main characteristic is the ability to retrieve cloud properties much faster than conventional methods. Furthermore, a detailed study of input data is performed to avoid different sources of errors that appear in several MODIS infrared channels. Finally, results of applying the proposed method are compared with in-situ measurements carried out during the DYCOMS-II field experiment.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号