The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms. 相似文献
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult. 相似文献
The purpose of “Vitamin” experiment is to study the efficiency of protective substances on three biological acellular systems aqueous solutions exposed to cosmic radiation in space. The first system “LDL”is a low density lipoprotein. The second is “E2-TeBG complexe” in which estradiol (E2) is bound to its plasmatic carrier protein, testosterone-estradiol binding globulin (TeBG). The third is “pBR 322”, a plasmid. “Vitamin” experiment was accomodated in the Biopan which had been mounted on the outer surface of a Foton retrievable satellite. The experiment was exposed to space environment during 15 days. A stable temperature of about 20 °C was maintained throughout the flight. “Vitamin” experiment preliminary results are presented and discussed. 相似文献
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionization anomaly (EIA) crest region is investigated by using dual-frequency signals of the Global Positioning System (GPS) acquired from Rajkot (Geog. Lat. 22.29°N, Geog. Long. 70.74°E; Geom. Lat. 14.21°N, Geom. Long. 144.90°E), India. The day-to-day variability of EIA characteristics is examined during low solar activity period (F10.7∼83 sfu). It is found that the daily maximum TEC at EIA crest exhibits a day-to-day and strong semi-annual variability. The seasonal anomaly and equinoctial asymmetry in TEC at EIA is found non-existent and weaker, respectively. We found a moderate and positive correlation of daily magnitude of crest, Ic with daily F10.7 and EUV fluxes with a correlation coefficient of 0.43 and 0.33, respectively indicating an existence of a short-term relation between TEC at EIA and the solar radiation even during low solar activity period. The correlation of daily Ic with Dst index is also moderate (r = −0.35), whereas no correlation is found with the daily Kp index (r = 0.14) respectively. We found that the magnitude of EIA crest is moderately correlated with solar flux in all seasons except winter where it is weakly related (0.27). The magnitude of EIA crest is also found highly related with EEJ strength in spring (r = 0.69) and summer (r = 0.65) than autumn (0.5) and winter (r = 0.47), though EEJ is stronger in autumn than spring. 相似文献
We evaluated the influence of prolonged weightlessness on the performance of visual tasks in the course of the Russian-French missions ANTARES, Post-ANTARES and ALTAIR aboard the MIR station. Eight cosmonauts were subjects in two experiments executed pre-flight, in-flight and post-flight sessions.
In the first experiment, cosmonauts performed a task of symmetry detection in 2-D polygons. The results indicate that this detection is locked in a head retinal reference frame rather than in an environmentally defined one as meridional orientations of symmetry axis (vertical and horizontal) elicited faster response times than oblique ones. However, in weightlessness the saliency of a retinally vertical axis of symmetry is no longer significantly different from an horizontal axis. In the second experiment, cosmonauts performed a mental rotation task in which they judged whether two 3-D objects presented in different orientations were identical. Performance on this task is basically identical in weightlessness and normal gravity. 相似文献
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses. 相似文献
SIGMA - 3 gas chromatograph on board VEGA 1 and 2 landing probes has been operated successfully in the 60 - 50 km altitude range, providing several in - situ chemical analysis of the gas and the aerosols of Venus cloud layers. Post flight calibration required to derive atmospheric abundancies from gas chromatograms were carried out using the SIGMA - 3 spare model. A Venus atmospheric aerosol simulation chamber was used in which sulfuric acid droplets were generated. Preliminary results of these calibration experiments indicate that the concentration of sulfuric acid in the upper part of the clouds ( 60 to 55 km) is about 1 mg/m3 and suggest that an additional constituant must be present in noticeable amount in the aerosols. From these experiments the mixing ratio upper limits of SO2 is 100 ppmV and of H2S and COS is few 10 ppmV. 相似文献
Polish radar research and development since 1953 is reviewed, covering the development and production of surveillance radars, height finders, tracking radars, air traffic control (ATC) radars and systems, and marine and Doppler radars. Some current work, including an L-band ATC radar for enroute control, a weather channel for primary surveillance radar, signal detection in non-Gaussian clutter, adaptive MTI filters and postdetection filtering, and a basic approach to radar polarimetry, is examined.<> 相似文献
Space Science Reviews - Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in... 相似文献
The Active Rack Isolation System [ARIS] International Space Station [ISS] Characterization Experiment, or ARIS-ICE for short, is a long duration microgravity characterization experiment aboard the ISS. The objective of the experiment is to fully characterize active microgravity performance of the first ARIS rack deployed on the ISS. Efficient ground and on-orbit command and data handling [C&DH] segments are the crux in achieving the challenging objectives of the mission. The objective of the paper is to provide an overview of the C&DH architectures developed for ARIS-ICE, with the view that these architectures may serve as a model for future ISS microgravity payloads. Both ground and on-orbit segments, and their interaction with corresponding ISS C&DH systems are presented. The heart of the on-orbit segment is the ARIS-ICE Payload On-orbit Processor, ARIS-ICE POP for short. The POP manages communication with the ISS C&DH system and other ISS subsystems and payloads, enables automation of test/data collection sequences, and provides a wide range of utilities such as efficient file downlinks/uplinks, data post-processing, data compression and data storage. The hardware and software architecture of the POP is presented and it is shown that the built-in functionality helps to dramatically streamline the efficiency of on-orbit operations. The ground segment has at its heart special ARIS-ICE Ground Support Equipment [GSE] software developed for the experiment. The software enables efficient command and file uplinks, and reconstruction and display of science telemetry packets. The GSE software architecture is discussed along with its interactions with ISS ground C&DH elements. A test sequence example is used to demonstrate the interplay between the ground and on-orbit segments. 相似文献