首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18481篇
  免费   41篇
  国内免费   124篇
航空   9915篇
航天技术   5595篇
综合类   256篇
航天   2880篇
  2021年   159篇
  2018年   217篇
  2016年   156篇
  2014年   440篇
  2013年   523篇
  2012年   425篇
  2011年   584篇
  2010年   407篇
  2009年   748篇
  2008年   793篇
  2007年   374篇
  2006年   429篇
  2005年   404篇
  2004年   443篇
  2003年   551篇
  2002年   484篇
  2001年   586篇
  2000年   370篇
  1999年   458篇
  1998年   446篇
  1997年   331篇
  1996年   415篇
  1995年   492篇
  1994年   475篇
  1993年   360篇
  1992年   351篇
  1991年   255篇
  1990年   243篇
  1989年   426篇
  1988年   209篇
  1987年   242篇
  1986年   238篇
  1985年   652篇
  1984年   530篇
  1983年   425篇
  1982年   491篇
  1981年   615篇
  1980年   248篇
  1979年   187篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   194篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   149篇
  1970年   144篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
321.
Senrad: an advanced wideband air-surveillance radar   总被引:1,自引:0,他引:1  
The generic characteristics and performance of an experimental long-range air-surveillance radar, known at the Naval Research Laboratory as Senrad, is described. Its distinguishing feature is that it can operate with simultaneous transmissions over a very wide bandwidth-from 850 to 1400 MHz. The technology and type of experimental radar equipment employed are discussed and examples are given of its performance capabilities obtained by means of very wideband operation. The unusually wide bandwidth of this radar allows 1) improved detection and tracking performance because of the absence of the nulls that are common in the antenna elevation radiation-pattern of a single-frequency radar; 2) moving target indication (MTI) without loss of targets due to blind speeds and without the need for multiple PRFs (pulse repetition frequencies); 3) accurate height finding with a fan-beam radar by taking advantage of the multipath time difference as a function of target height; 4) a form of limited target recognition based on high range-resolution; and 5) a reduction of the effectiveness of electronic countermeasures that can seriously degrade more narrowband radars  相似文献   
322.
气固紊流剪切流中颗粒弥散的拉格朗日模拟   总被引:1,自引:0,他引:1  
本文提出了一种对于气固两相紊流剪切流中圆形固体颗粒弥散的拉格朗日拟计算方法,其中考虑了颗粒间的磁撞对流体相和颗料相的影响,应用该方法对一气固紊流剪切流场进行了模拟计算,并对有、无颗粒间磁撞情况下的模拟计算结果与Lavieville用大涡模拟方法的研究结果进行了比较,并进行了讨论。  相似文献   
323.
The critical flow conditions and structural forms of a two-phase flow that is formed during water efflux from the region of moderate and low pressures into a rarefied medium are analyzed. The difference in the structural forms of a flow realized at the low-head efflux from the structure of a flow occurring in the fluid flow with moderate and high initial pressures is established. The critical pressure differential characterizing the establishment of the maximum flowrate is determined and the decisive influence of turbulence on the vapor phase generation and flow conditions of a two-phase medium is shown.  相似文献   
324.
Mercury’s unusually high mean density has always been attributed to special circumstances that occurred during the formation of the planet or shortly thereafter, and due to the planet’s close proximity to the Sun. The nature of these special circumstances is still being debated and several scenarios, all proposed more than 20 years ago, have been suggested. In all scenarios, the high mean density is the result of severe fractionation occurring between silicates and iron. It is the origin of this fractionation that is at the centre of the debate: is it due to differences in condensation temperature and/or in material characteristics (e.g. density, strength)? Is it because of mantle evaporation due to the close proximity to the Sun? Or is it due to the blasting off of the mantle during a giant impact? In this paper we investigate, in some detail, the fractionation induced by a giant impact on a proto-Mercury having roughly chondritic elemental abundances. We have extended the previous work on this hypothesis in two significant directions. First, we have considerably increased the resolution of the simulation of the collision itself. Second, we have addressed the fate of the ejecta following the impact by computing the expected reaccretion timescale and comparing it to the removal timescale from gravitational interactions with other planets (essentially Venus) and the Poynting–Robertson effect. To compute the latter, we have determined the expected size distribution of the condensates formed during the cooling of the expanding vapor cloud generated by the impact. We find that, even though some ejected material will be reaccreted, the removal of the mantle of proto-Mercury following a giant impact can indeed lead to the required long-term fractionation between silicates and iron and therefore account for the anomalously high mean density of the planet. Detailed coupled dynamical–chemical modeling of this formation mechanism should be carried out in such a way as to allow explicit testing of the giant impact hypothesis by forthcoming space missions (e.g. MESSENGER and BepiColombo).  相似文献   
325.
ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by Principal Investigators, which are responsible for their operations. As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines.  相似文献   
326.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries.  相似文献   
327.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and active region compositions and the transition region composition is frequently different from the coronal composition along the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R .  相似文献   
328.
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.  相似文献   
329.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   
330.
The properties of interstellar matter at the Sun are regulated by our location with respect to a void in the local matter distribution, known as the Local Bubble. The Local Bubble (LB) is bounded by associations of massive stars and fossil supernovae that have disrupted dense interstellar matter (ISM), driving low density intermediate velocity ISM into the void. The Sun appears to be located in one of these flows of low density material. This nearby interstellar matter, dubbed the Local Fluff, has a bulk velocity of ∼19 km s−1 in the local standard of rest. The flow is coming from the direction of the gas and dust ring formed where the Loop I supernova remnant merges into the LB. Optical polarization data suggest that the local interstellar magnetic field lines are draped over the heliosphere. A longstanding discrepancy between the high thermal pressure of plasma filling the LB and low thermal pressures in the embedded Local Fluff cloudlets is partially mitigated when the ram pressure component parallel to the cloudlet flow direction is included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号