全文获取类型
收费全文 | 5414篇 |
免费 | 11篇 |
国内免费 | 18篇 |
专业分类
航空 | 2836篇 |
航天技术 | 1921篇 |
综合类 | 23篇 |
航天 | 663篇 |
出版年
2021年 | 30篇 |
2019年 | 32篇 |
2018年 | 57篇 |
2017年 | 31篇 |
2014年 | 82篇 |
2013年 | 132篇 |
2012年 | 107篇 |
2011年 | 155篇 |
2010年 | 114篇 |
2009年 | 177篇 |
2008年 | 245篇 |
2007年 | 136篇 |
2006年 | 140篇 |
2005年 | 143篇 |
2004年 | 114篇 |
2003年 | 170篇 |
2002年 | 101篇 |
2001年 | 176篇 |
2000年 | 109篇 |
1999年 | 140篇 |
1998年 | 164篇 |
1997年 | 123篇 |
1996年 | 169篇 |
1995年 | 215篇 |
1994年 | 182篇 |
1993年 | 120篇 |
1992年 | 127篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 138篇 |
1988年 | 62篇 |
1987年 | 66篇 |
1986年 | 60篇 |
1985年 | 195篇 |
1984年 | 150篇 |
1983年 | 130篇 |
1982年 | 133篇 |
1981年 | 176篇 |
1980年 | 58篇 |
1979年 | 41篇 |
1978年 | 50篇 |
1977年 | 53篇 |
1976年 | 38篇 |
1975年 | 58篇 |
1974年 | 38篇 |
1973年 | 42篇 |
1972年 | 51篇 |
1971年 | 42篇 |
1970年 | 44篇 |
1969年 | 37篇 |
排序方式: 共有5443条查询结果,搜索用时 62 毫秒
661.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future. 相似文献
662.
663.
分析了冷轧体心立方金属中微带的形成原因.基于塑性变形理论,运用Taylor模型和Bishop&Hill最大功原理,计算了变形体心立方晶体中滑移系上的切应变分布.计算结果表明,冷轧时当晶粒的轧向平行于晶粒的某些特定取向时,大量的局部切应变将集中产生在一个滑移面上并在此形成微带.这一高度局域性的切应变是形成剪切带的原因.此时,剪切带与轧制方向之间夹角为30°.另外,微带呈片状是双交滑移的结果,透射电子显微镜观察到的剪切带所在晶粒的取向和所在滑移面证实了这一微带的形成机制. 相似文献
664.
R. Schwenn J. C. Raymond D. Alexander A. Ciaravella N. Gopalswamy R. Howard H. Hudson P. Kaufmann A. Klassen D. Maia G. Munoz-Martinez M. Pick M. Reiner N. Srivastava D. Tripathi A. Vourlidas Y.-M. Wang J. Zhang 《Space Science Reviews》2006,123(1-3):127-176
CMEs have been observed for over 30 years with a wide variety of instruments. It is now possible to derive detailed and quantitative information on CME morphology, velocity, acceleration and mass. Flares associated with CMEs are observed in X-rays, and several different radio signatures are also seen. Optical and UV spectra of CMEs both on the disk and at the limb provide velocities along the line of sight and diagnostics for temperature, density and composition. From the vast quantity of data we attempt to synthesize the current state of knowledge of the properties of CMEs, along with some specific observed characteristics that illuminate the physical processes occurring during CME eruption. These include the common three-part structures of CMEs, which is generally attributed to compressed material at the leading edge, a low-density magnetic bubble and dense prominence gas. Signatures of shock waves are seen, but the location of these shocks relative to the other structures and the occurrence rate at the heights where Solar Energetic Particles are produced remains controversial. The relationships among CMEs, Moreton waves, EIT waves, and EUV dimming are also cloudy. The close connection between CMEs and flares suggests that magnetic reconnection plays an important role in CME eruption and evolution. We discuss the evidence for reconnection in current sheets from white-light, X-ray, radio and UV observations. Finally, we summarize the requirements for future instrumentation that might answer the outstanding questions and the opportunities that new space-based and ground-based observatories will provide in the future. 相似文献
665.
Multipath-adaptive GPS/INS receiver 总被引:2,自引:0,他引:2
Erickson J.W. Maybeck P.S. Raquet J.F. 《IEEE transactions on aerospace and electronic systems》2005,41(2):645-657
Multipath interference is one of the contributing sources of errors in precise global positioning system (GPS) position determination. This paper identifies key parameters of a multipath signal, focusing on estimating them accurately in order to mitigate multipath effects. Multiple model adaptive estimation (MMAE) techniques are applied to an inertial navigation system (INS)-coupled GPS receiver, based on a federated (distributed) Kalman filter design, to estimate the desired multipath parameters. The system configuration is one in which a GPS receiver and an INS are integrated together at the level of the in-phase and quadrature phase (I and Q) signals, rather than at the level of pseudo-range signals or navigation solutions. The system model of the MMAE is presented and the elemental Kalman filter design is examined. Different parameter search spaces are examined for accurate multipath parameter identification. The resulting GPS/INS receiver designs are validated through computer simulation of a user receiving signals from GPS satellites with multipath signal interference present The designed adaptive receiver provides pseudo-range estimates that are corrected for the effects of multipath interference, resulting in an integrated system that performs well with or without multipath interference present. 相似文献
666.
The effects of prolonged bedrest in antiorthostatic position (-4 degrees head down) on electrolyte balance were studied in 4 young volunteers. An increase was noted in sodium excretion during the first 4 days. Plasma renin activity and plasma aldosterone varied in parallel manner during the same period. Potassium balance and creatinine clearance were not significantly modified. In light of these data we feel that prolonged bedrest in antiorthostatic position constitutes an effective way to simulate on earth metabolic and hormonal modifications occurring in man under weightlessness conditions. 相似文献
667.
H. M. Fischer J. D. Mihalov L. J. Lanzerotti G. Wibberenz K. Rinnert F. O. Gliem J. Bach 《Space Science Reviews》1992,60(1-4):79-90
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit. 相似文献
668.
Gabrion J Herbute S Oliver J Maurel D Davet J Clavel B Gharib C Fareh J Fagette S Nguyen B 《Acta Astronautica》1995,36(8-12):439-448
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity. 相似文献
669.
K Kobayashi T Kasamatsu T Kaneko J Koike T Oshima T Saito T Yamamoto H Yanagawa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(2):21-26
Cometary ices are believed to contain water, carbon monoxide, methane and ammonia, and are possible sites for the formation and preservation of organic compounds relating to the origin of life. Cosmic rays, together with ultraviolet light, are among the most effective energy sources for the formation of organic compounds in space. In order to study the possibility of the formation of amino acids in comets or their precursory bodies (interstellar dust grains), several types of ice mixtures made in a cryostat at 10 K ("simulated cometary ices") were irradiated with high energy protons. After irradiation, the volatile products were analyzed with a quadrupole mass spectrometer, while temperature of the cryostat was raised to room temperature. The non-volatile products remaining in the cryostat at room temperature were collected with water. They were acid-hydrolyzed, and analyzed by ion-exchange chromatography. When an ice mixture of carbon monoxide (or methane), ammonia and water was irradiated, some hydrocarbons were formed, and amino acids such as glycine and alanine were detected in the hydrolyzate. These results suggest the possible formation of "amino acid precursors" (compounds yielding amino acids after hydrolysis) in interstellar dust grains by cosmic radiation. We previously reported that amino acid precursors were formed when simulated primitive planetary atmospheres were irradiated with cosmic ray particles. It will be of great interest to compare the amount of bioorganic compounds that were formed in the primitive earth and that brought by comets to the earth. 相似文献
670.
J Schumacher B Kliem 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1797-1800
Two-dimensional compressible magnetohydrodynamic simulations of current sheet dynamics under the influence of multiple anomalous resistivity areas and slight asymmetries are presented. Following induced tearing and multiple coalescence, a plasmoid is formed and accelerated. Dominant X-points drive the dynamical evolution and lead to transient occurrence of a Petschek-like reconnection geometry. The dependence of current density extrema, plasmoid bulk velocity and maximum reconnection rate on the Lundquist number is examined. 相似文献