全文获取类型
收费全文 | 5419篇 |
免费 | 13篇 |
国内免费 | 11篇 |
专业分类
航空 | 2837篇 |
航天技术 | 1920篇 |
综合类 | 23篇 |
航天 | 663篇 |
出版年
2021年 | 30篇 |
2019年 | 32篇 |
2018年 | 57篇 |
2017年 | 31篇 |
2014年 | 82篇 |
2013年 | 132篇 |
2012年 | 107篇 |
2011年 | 155篇 |
2010年 | 114篇 |
2009年 | 177篇 |
2008年 | 246篇 |
2007年 | 136篇 |
2006年 | 140篇 |
2005年 | 143篇 |
2004年 | 114篇 |
2003年 | 170篇 |
2002年 | 101篇 |
2001年 | 176篇 |
2000年 | 109篇 |
1999年 | 140篇 |
1998年 | 164篇 |
1997年 | 123篇 |
1996年 | 169篇 |
1995年 | 215篇 |
1994年 | 182篇 |
1993年 | 120篇 |
1992年 | 127篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 138篇 |
1988年 | 62篇 |
1987年 | 66篇 |
1986年 | 60篇 |
1985年 | 195篇 |
1984年 | 150篇 |
1983年 | 130篇 |
1982年 | 133篇 |
1981年 | 176篇 |
1980年 | 58篇 |
1979年 | 41篇 |
1978年 | 50篇 |
1977年 | 53篇 |
1976年 | 38篇 |
1975年 | 58篇 |
1974年 | 38篇 |
1973年 | 42篇 |
1972年 | 51篇 |
1971年 | 42篇 |
1970年 | 44篇 |
1969年 | 37篇 |
排序方式: 共有5443条查询结果,搜索用时 15 毫秒
871.
872.
Robust model following control of parallel buck converters 总被引:1,自引:0,他引:1
Garcera G. Figueres E. Pascual M. Benavent J.M. 《IEEE transactions on aerospace and electronic systems》2004,40(3):983-997
A robust model-following (RMF) control technique for average current mode controlled (ACC) parallel buck dc-dc converters, RMFACC, is presented. RMFACC achieves that the loop gain of the voltage loop is little sensitive to the variation of power stage parameters: number of modules, input voltage, load, and component tolerances. The design of the voltage loop is 'decoupled' from the design of the disturbance rejection transfer functions in an important degree, so that the output impedance and audio susceptibility are greatly reduced without the need of high loop gain crossover frequencies. A comparative study between conventional ACC and RMFACC is shown. 相似文献
873.
Dabbous T.E. Ahmed N.U. McMillan J.C. Liang D.F. 《IEEE transactions on aerospace and electronic systems》1988,24(1):85-102
A refined stochastic model for the errors of the Loran-C radio navigation aid is described, and it is shown how this model can be used to improve the performance of integrated navigation systems. In addition to the usual propagation errors, Loran-C time of arrival measurements are occasionally plagued with sudden intermittent errors of a particular magnitude and caused by receiver cycle selection errors. These result in sudden large jumps in the calculated position solution. The Loran-C error has been modeled as the sum of a diffusion process, representing the normal propagating errors, and a pure jump process of Poisson type, representing the cycle selection errors. A simple integrated navigation system is then described, based on the Loran-C model and the standard dead reckoning (heading and speed) system model. Assuming that the observed process is governed by a linear stochastic difference equation, a recursive linear unbiased minimum variance filter is developed, from which the Loran-C and dead reckoning errors, and hence position and velocity, can be estimated 相似文献
874.
X. Wang J.K. Shi G.J. Wang G.A. Zherebtsov O.M. Pirog 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):556-561
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan. 相似文献
875.
Y Kitaya M Kawai J Tsuruyama H Takahashi A Tani E Goto T Saito M Kiyota 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):659-664
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air. 相似文献
876.
In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system. 相似文献
877.
By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the large-scale quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
878.
G. D. Holman M. J. Aschwanden H. Aurass M. Battaglia P. C. Grigis E. P. Kontar W. Liu P. Saint-Hilaire V. V. Zharkova 《Space Science Reviews》2011,159(1-4):107-166
High-energy X-rays and ??-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed. 相似文献
879.
The Electric Antennas for the STEREO/WAVES Experiment 总被引:1,自引:0,他引:1
S. D. Bale R. Ullrich K. Goetz N. Alster B. Cecconi M. Dekkali N. R. Lingner W. Macher R. E. Manning J. McCauley S. J. Monson T. H. Oswald M. Pulupa 《Space Science Reviews》2008,136(1-4):529-547
The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind. Interplanetary radio bursts are generated from electron beams at interplanetary shocks and solar flares and are observed from near the Sun to 1 AU, corresponding to frequencies of approximately 16 MHz to 10 kHz. In situ plasma waves occur in a range of wavelengths larger than the Debye length in the solar wind plasma λ D ≈10 m and appear Doppler-shifted into the frequency regime down to a fraction of a Hertz. These phenomena are measured by STEREO/WAVES with a set of three orthogonal electric monopole antennas. This paper describes the electrical and mechanical design of the antenna system and discusses efforts to model the antenna pattern and response and methods for in-flight calibration. 相似文献
880.
F.F. Badavi M.A. Xapsos J.W. Wilson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A rapid analytical procedure for the prediction of a micro-dosimeter response function in low Earth orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (δ ray) events. At any designated (ray traced) target point within the vehicle, the model accepts the differential flux spectrum of Galactic Cosmic Rays (GCRs) and/or trapped protons at LEO as input. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 s/ion. The ionizing radiation environment at LEO is represented by O’Neill’s GCR model (2004), covering charged particles in the 1 ? Z ? 28 range. O’Neill’s free space GCR model is coupled with the Langley Research Center (LaRC) angular dependent geomagnetic cutoff model to compute the transmission coefficient in LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8MIN/AP8MAX, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 51 and 114 flights are accomplished by using the most recent version (2005) of the LaRC deterministic High charge (Z) and Energy TRaNsport (HZETRN) code. We present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy (y) domain for both GCR and trapped protons, with the conclusion that the model correctly accounts for the increase in flux at low y values where energetic ions are the primary contributor. We further discuss that, even with the incorporation of angular dependency in the cutoffs, comparison of the GCR differential/integral flux between STS 51 and 114 TEPC measured data and current calculations indicates that there still exists an underestimation by the simulations at low to mid range y values. This underestimation is partly related the exclusion of the secondary pion particle production from the current version of HZETRN. 相似文献