全文获取类型
收费全文 | 5419篇 |
免费 | 13篇 |
国内免费 | 11篇 |
专业分类
航空 | 2837篇 |
航天技术 | 1920篇 |
综合类 | 23篇 |
航天 | 663篇 |
出版年
2021年 | 30篇 |
2019年 | 32篇 |
2018年 | 57篇 |
2017年 | 31篇 |
2014年 | 82篇 |
2013年 | 132篇 |
2012年 | 107篇 |
2011年 | 155篇 |
2010年 | 114篇 |
2009年 | 177篇 |
2008年 | 245篇 |
2007年 | 136篇 |
2006年 | 140篇 |
2005年 | 144篇 |
2004年 | 114篇 |
2003年 | 170篇 |
2002年 | 101篇 |
2001年 | 176篇 |
2000年 | 109篇 |
1999年 | 140篇 |
1998年 | 164篇 |
1997年 | 123篇 |
1996年 | 169篇 |
1995年 | 215篇 |
1994年 | 182篇 |
1993年 | 120篇 |
1992年 | 127篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 138篇 |
1988年 | 62篇 |
1987年 | 66篇 |
1986年 | 60篇 |
1985年 | 195篇 |
1984年 | 150篇 |
1983年 | 130篇 |
1982年 | 133篇 |
1981年 | 176篇 |
1980年 | 58篇 |
1979年 | 41篇 |
1978年 | 50篇 |
1977年 | 53篇 |
1976年 | 38篇 |
1975年 | 58篇 |
1974年 | 38篇 |
1973年 | 42篇 |
1972年 | 51篇 |
1971年 | 42篇 |
1970年 | 44篇 |
1969年 | 37篇 |
排序方式: 共有5443条查询结果,搜索用时 15 毫秒
991.
Klumpar D.M. Möbius E. Kistler L.M. Popecki M. Hertzberg E. Crocker K. Granoff M. Tang Li Carlson C.W. McFadden J. Klecker B. Eberl F. Künneth E. Kästle H. Ertl M. Peterson W.K. Shelly E.G. Hovestadt D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within
spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2
+ molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor. 相似文献
992.
E. J. Smith M. Neugebauer A. Balogh S. J. Bame R. P. Lepping B. T. Tsurutani 《Space Science Reviews》1995,72(1-2):165-170
The radial component of the magnetic field at Ulysses, over latitudes from –10° to –45° and distances from 5.3 to 3.8 AU, compares very well with corresponding measurements being made by IMP-8 in the ecliptic at 1AU. There is little, if any, evidence of a latitude gradient. Variances in the field, normalized to the square of the field magnitude, show little change with latitude in variations in the magnitude but a large increase in the transverse field variations. The latter are shown to be caused by the presence of large amplitude, long period Alfvénic fluctuations. This identification is based on the close relation between the magnetic field and velocity perturbations including the effect of anisotropy in the solar wind pressure. The waves are propagating outward from the Sun, as in the ecliptic, but variance analysis indicates that the direction of propagation is radial rather than field-aligned. A significant long-period component of 10 hours is present. 相似文献
993.
994.
995.
B. Ragent C. A. Privette P. Avrin J. G. Waring C. E. Carlston T. C. D. Knight J. P. Martin 《Space Science Reviews》1992,60(1-4):179-201
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased. 相似文献
996.
A Gaussian sum estimation algorithm has previously been developed to deal with noise processes that are non-Gaussian. Inherent in this algorithm is a serious growing memory problem that causes the number of terms in the Gaussian sum to increase exponentially at each iteration. A modified Gaussian sum estimation algorithm using an adaptive filter is developed that avoids the growing memory problem of the previous algorithm while providing effective state estimation. The adaptive filter is comprised of a fixed set of estimators operating in parallel with each individual estimate possessing its own corresponding weighting term. A simulation example illustrates the new non-Gaussian estimation technique 相似文献
997.
A.J. de Abreu P.R. Fagundes M. Gende O.S. Bolaji R. de Jesus C. Brunini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The responses of the ionospheric F region using GPS–TEC measurements during two moderate geomagnetic storms at equatorial, low-, and mid-latitude regions over the South American and African sectors in May 2010, during the ascending phase of solar cycle 24, are investigated. The first moderate geomagnetic storm studied reached a minimum Dst value of −64 nT at 1500 UT on 02 May 2010 and the second moderate geomagnetic storm reached a minimum Dst value of −85 nT at 1400 UT on 29 May 2010. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations from the equatorial to mid-latitude regions in the South American and African sectors. Our results obtained during these two moderate geomagnetic storms from both sectors show significant positive ionospheric storms during daytime hours at the equatorial, low-, and mid-latitude regions during the main and recovery phases of the storms. The thermospheric wind circulation change towards the equator is a strong indicator that suggests an important mechanism is responsible for these positive phases at these regions. A pre-storm event that was observed in the African sector from low- to the mid-latitude regions on 01 May 2010 was absent in the South American sector. This study also showed that there was no generation or suppression of ionospheric irregularities by storm events. Therefore, knowledge about the suppression and generation of ionospheric irregularities during moderate geomagnetic storms is still unclear. 相似文献
998.
B. Aschenbach H. Bräuninger U. Briel W. Brinkmann H. Fink N. Heinecke H. Hippmann G. Kettenring G. Metzner A. Ondrusch E. Pfeffermann P. Predehl G. Reger K. -H. Stephan J. Trümper H. U. Zimmermann 《Space Science Reviews》1981,30(1-4):569-573
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20. 相似文献
999.
Dias J.M.B. Marques P.A.C. 《IEEE transactions on aerospace and electronic systems》2003,39(2):604-624
A novel methodology is presented for determining the velocity and location of multiple moving targets using a single strip-map synthetic aperture radar (SAR) sensor. The so-called azimuth position uncertainty problem is therefore solved. The method exploits the structure of the amplitude and phase modulations of the returned echo from a moving target in the Fourier domain. A crucial step in the whole processing scheme is a matched filtering, depending on the moving target parameters, that simultaneously accounts for range migration and compresses two-dimensional signatures into one-dimensional ones without losing moving target information. A generalized likelihood ratio test approach is adopted to detect moving targets and derive their trajectory parameters. The effectiveness of the method is illustrated with synthetic and real data covering a wide range of targets velocities and signal-to-clutter ratios (SCRs). Even in the case of parallel to platform moving target motion, the most unfavorable scenario, the proposed method yields good results for, roughly, SCR > 10 dB. 相似文献
1000.
Studies evaluating the transport coefficients for energetic particles in interplanetary space are described in relation to particle data.In position space, the main mode of propagation is along field lines but perpendicular diffusion and drift motion is also possible. Diffusion coefficients based on interplanetary magnetic field data are either derived from quasi-linear, adiabatic theory or this theory corrected for finite scattering near 90° pitch angle or by numerical techniques. Relevant particle data includes solar proton event time profile and anisotropy measurements. In general, when Fokker-Planck transport equation solutions are fitted to particle data, the parallel diffusion coefficients obtained still appear rather larger than those given by theoretical estimates. Perpendicular diffusion is shown to be due to field line wandering and random drift motion effects. The importance of drift motion in cosmic ray modulation theory is mentioned.Although much emphasis is currently placed upon shock acceleration in CIR's, statistical acceleration in interplanetary space must be considered. Energetic particles may gain energy from longitudinal waves and cyclotron resonance interactions. Analytical and numerical estimates of the energy space diffusion coefficients are considered. Some reveal a surprising importance to this statistical acceleration and can explain a variety of data.Presented at the Fifth International Symposium on Solar-Terrestrial Physics, held at Ottawa, Canada, May 1982. 相似文献