全文获取类型
收费全文 | 10277篇 |
免费 | 24篇 |
国内免费 | 33篇 |
专业分类
航空 | 4918篇 |
航天技术 | 3528篇 |
综合类 | 42篇 |
航天 | 1846篇 |
出版年
2021年 | 89篇 |
2019年 | 64篇 |
2018年 | 189篇 |
2017年 | 118篇 |
2016年 | 121篇 |
2015年 | 60篇 |
2014年 | 222篇 |
2013年 | 299篇 |
2012年 | 278篇 |
2011年 | 407篇 |
2010年 | 292篇 |
2009年 | 432篇 |
2008年 | 496篇 |
2007年 | 296篇 |
2006年 | 246篇 |
2005年 | 271篇 |
2004年 | 242篇 |
2003年 | 312篇 |
2002年 | 205篇 |
2001年 | 337篇 |
2000年 | 196篇 |
1999年 | 243篇 |
1998年 | 283篇 |
1997年 | 194篇 |
1996年 | 278篇 |
1995年 | 331篇 |
1994年 | 308篇 |
1993年 | 192篇 |
1992年 | 231篇 |
1991年 | 102篇 |
1990年 | 97篇 |
1989年 | 224篇 |
1988年 | 102篇 |
1987年 | 109篇 |
1986年 | 103篇 |
1985年 | 303篇 |
1984年 | 241篇 |
1983年 | 198篇 |
1982年 | 209篇 |
1981年 | 330篇 |
1980年 | 97篇 |
1979年 | 75篇 |
1978年 | 84篇 |
1977年 | 74篇 |
1975年 | 93篇 |
1974年 | 70篇 |
1973年 | 64篇 |
1972年 | 75篇 |
1971年 | 67篇 |
1970年 | 68篇 |
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
321.
Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989. 相似文献
322.
Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. 总被引:7,自引:0,他引:7
The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985. 相似文献
323.
324.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers. 相似文献
325.
Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment. 相似文献
326.
K. Clark J. Boldt R. Greeley K. Hand I. Jun R. Lock R. Pappalardo T. Van Houten T. Yan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter’s icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander. 相似文献
327.
F. Ramírez-Martínez C. Lacroûte P. Rosenbusch F. Reinhard C. Deutsch T. Schneider J. Reichel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments. 相似文献
328.
G. Stratta A. Pozanenko J.L. Atteia A. Klotz S. Basa B. Gendre F. Verrecchia M. Boër S. Cutini M. Henze S. Holland M. Ibrahimov F. Ienna I. Khamitov S. Klose V. Rumyantsev V. Biryukov F. Vachier S. Arnouts D. Perley 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The detection of a bright optical emission measured with good temporal resolution during the prompt phase makes GRB 060111B a rare event that is especially useful for constraining theories of the prompt optical emission. Comparing this burst with other GRBs with evidence of optical peaks, we find that the optical peak epoch (tp) is anti-correlated with the high energy burst energetic assuming an isotropic energy release (Eiso) in agreement with Liang et al. (2009), and that the steeper is the post-peak afterglow decay, the less is the agreement with the correlation. GRB 060111B is among the latters and it does not match the correlation. The Cannonball scenario is also discussed and we find that this model cannot be excluded for GRB 060111B. 相似文献
329.
O.K. Cheremnykh A.N. Kryshtal A.A. Tkachenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):603-610
In this paper, we study conditions of realization and stability of kink modes with azimuthal wave numbers in cylindrical plasma flex with twisted magnetic field and homogeneous current along its axis. We assume permanent axial magnetic field both inside and outside the flex, surrounded by currentless plasma. Azimuthal magnetic field decreases inversely proportional to the distance from the boundary beyond the flex. We derived dispersion equations for stable and unstable modes in approximation of “thin” plasma flex. The analysis of equations has been provided for the case of discontinuous axial magnetic field on flex’s boundary. Conditions of propagation of wave modes have been defined. It was shown, that unstable modes can be implemented in certain interval of longitudinal wavenumbers. Results can be applied for the interpretation of solar magnetic tubes behavior, using measurements, provided by spacecrafts. 相似文献
330.
Valentin A. Shuvalov Dmitry N. Lazuchenkov Nikolai B. Gorev Galina S. Kochubei 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):355-366
Using a cylindrical Langmuir probe and the authors’ proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011–2012) were measured. This paper is concerned with identifying the space–time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track.It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation. 相似文献